

MULTIMODAL INJURY RISK ANALYSIS OF ROAD USERS AT SIGNALIZED AND NON-SIGNALIZED INTERSECTIONS

PhD Candidate: Jillian Strauss Supervisor: Luis Miranda-Moreno

24th Canadian Multidisciplinary Road Safety Conference, Vancouver, B.C., June 1-4, 2014 24ème Conférence canadienne multidisciplinaire sur la sécurité routière, Vancouver, B.C., 1-4 juin 2014

OUTLINE

- Background
- Literature review
- Research motivations
- Objectives
- Methodology
- Results
- Conclusion
- Limitations and future work

BACKGROUND

- Recent increase in modal share of walking and cycling
- Strategies to make roads safer for vulnerable road users
 - Installation and expansion of bicycle facilities, all-red phases for pedestrians, curb extensions, better marking, etc....)
- Despite the many efforts, road safety remains a major concern

LITERATURE

- Cyclist safety studies:
 - Most carried out in Europe and Asia
 - Focused on injuries at city or town level not intersections
- Pedestrian safety studies:
 - Not as rare in North America
 - Focused on intersections
- Overall results for both modes as traffic flows increase injury occurrence increases
- Few attempts have been made to combine these into a multimodal approach
 - Are intersections which are safe for cyclists, dangerous for pedestrians or vehicles....?

LITERATURE

- Obtain a basis to compare safety between sites
 - Bayesian models popular since safety measures and ranking criteria can be computed easily
- Shortcomings:
 - Non-signalized intersections have not been studied
 - Studies have not looked at multiple road users
 - Bayesian methods to identify dangerous intersections for cyclists and pedestrians have not been used
 - Explanatory variables such as traffic controls, geometric design and built environment characteristics have not been considered

RESEARCH MOTIVATIONS

- Intersection complex area where many interactions can occur between cyclists, motor-vehicles and pedestrians
 - 60% of total injuries (in Montreal)
- Prevent future accidents from occurring
- In the current literature there is a lack of:
 - 1. Systematic methods for collecting and integrating traffic exposure measures
 - 2. Studies implementing multimodal approaches to address urban mobility and safety
- Urgent need to combine 1 and 2 into a decision making tool

OBJECTIVES

For cyclists, pedestrians and motor-vehicles and at both signalized and non-signalized intersections:

- 1) Develop injury occurrence models
- 2) Estimate injury risk using a Bayesian approach
- 3) Carry out comparative analysis for flows, injuries and risk
- 4) Investigate the impact of motor-vehicle flows on cyclist and pedestrian safety

METHODOLOGY

- Bayesian modeling framework simultaneously for injuries and flows
 - Injuries = function of:
 - Average annual daily cyclist or pedestrian traffic
 - Average annual daily motor-vehicle traffic flow
 - Geometric design and built environment characteristics
 - Delay or Level-of-service (LOS)
 - Flow = function of:
 - The same or different geometric design and built environment characteristics

METHODOLOGY

- Two criteria used for comparing safety between modes and intersection types
 - 1. Expected injuries
 - Posterior mean from the Bayesian model results $\boldsymbol{\theta}$
 - 2. Injury risk (rate)
 - Posterior injury rate per million cyclists, pedestrians and motor-vehicles per unit time $-\overline{R}_{iY} = \overline{\theta}_{iY} \times 10^6 / 365 \cdot t_i \cdot Z_i$

SITE SELECTION

- Island of Montreal
- 647 signalized intersections &
- 435 non-signalized, selected since:
- 1. recent count data is available
- 2. counts carried out during the cycling season, when bicycle facilities are open
- 3. Geometric design and built environment data have been collected
- 4. the completion dates of bicycle facilities are know

DATA – TRAFFIC FLOW

• Manual cyclist, pedestrian and motor-vehicle flows

Can show similar maps for pedestrians and vehicles as well.

DATA - INJURY

• Cyclist, pedestrian and motor-vehicle injury data

Can show similar maps for pedestrians and vehicles as well.

DATA - INJURY

DATA – GD AND TRAFFIC CONTROL

• Geometric design (GD) and traffic control characteristics for each intersection

Example of Signalized Intersection

Raised median Exclusive left turn lane

station

Additional Intersection Attributes (not shown)

Number of approaches

Number of lanes

Curb Extension

Pedestrian phasing

Presence of an arterial

Presence and type of bicycle facilities

Bus stops

Example of Non-Signalized Intersection

DATA – BUILT ENVIRONMENT

• Built environment data

RESULTS – INJURY MODELS

Signalized Intersections						Non-Signalized Intersections					
a)					CYC	LIST	b)				
Variable	Coef.	С	redible	Interval	Vc	Variable		coef.	Credible	redible Interval	
Ln bicycle flows	0.869	С).765	1.013	Ln	bicycle flows	0	.748	0.447	0.998	
Ln mv right turn flows	0.240	С	0.153	0.307	Ln	traffic flows	0	.261	0.057	0.415	
Ln mv left turn flows	0.185	С).106	0.279	То	otal number of lanes	0	.192	-0.020	0.386	
Presence of bus stops	0.519	С).196	0.842							
Total crosswalk length	0.009	С).004	0.014							
Raised median	-0.351	-(0.640	-0.037							
Constant	-10.08	-	10.66	-9.58	Сс	onstant	-1	7.52	-18.48	-16.67	
c)					PED	ESTRIAN			d)		
Variable	Coe	Coef.		Credible Inter		Variable	Coef.		Credible Interv		
Ln pedestrian flows	0.81	0.811		0.754 0.		Ln pedestrian flows		0.702	0.286	1.094	
Ln mv flows	0.31	8	0.300	0.3	30	Ln mv flows		0.416	0.039	0.783	
All-red phase	-0.38	-0.389		0 0.1	48						
Half-red phase	-0.36	-0.360		4 -0.)45						
Number of lanes	0.12	0.126		4 0.1	64						
Commercial entrances/exits	0.06	0.068		0 0.1	45						
Constant	-3.96		-4.72	2 -3	46	Constant	9.88		6.35	12.8	
e)				MOT	OR-\	VEHICLE			f)		
Variable	Coef.	С	redible	e Interva	l Vo	ariable	Coef.		Credible Intervo		
Ln mv right turn flows	0.174	(0.148	0.212	Lr	n mv right turn flows	0	.166	-0.103	0.399	
Ln mv left turn flows	0.163	(0.121	0.195	Lr	n mv left turn flows	0	.129	-0.030	0.247	
Ln mv through flows	0.263	(0.239	0.282	Lr	n mv through flows	0	.951	0.7868	1.103	
Presence of bus stops	0.661	(0.409	0.897							
Three approaches	-0.350	-(0.626	-0.081							
Constant	-4.63	-	-4.74	-4.43	С	onstant	-1	1.70	-13.00	-9.85	

mv = motorvehicle

RESULTS – INJURY

RESULTS - RISK

Risk

RESULTS – RISK

Signalized Intersections

Non-Signalized Intersections

CONCLUSION

- Importance of motor-vehicle traffic in total and turning movements – on injury occurrence
 - Of all modes
 - Both facility types
- Also, at signalized intersections:
 - For cyclists crosswalk length, raised median and bus stops
 - For pedestrians number of lanes, all-red and half-red phases, commercial entrances/exits
 - For motor-vehicles bus stops, three vs four approaches
- Number of injuries and risk are higher at signalized than at nonsignalized intersections

LIMITATIONS AND FUTURE WORK

- Improve multimodal approach simultaneous model
- Investigate effect of correlation among injury outcomes
- Require larger sample of non-signalized intersections
- Repeat analysis with police report accident data validate results

THANK YOU!

References:

- Brijs, T., Karlis, D., Van den Bossche, F., Wets, G., 2007. A Bayesian model for ranking hazardous road sites. J. R. Stat. Soc. Ser. A (Statistics Soc. 170, 1001–1017.
- Brüde, U., Larsson, J., 1993. Models for predicting accidents at junctions where pedestrians and cyclists are involved. How well do they fit? Accid. Anal. Prev. 25, 499–509.
- Cameron, M., 1982. A method of measuring exposure to pedestrian accident risk. Accid. Anal. Prev. 14, 397–405.
- Elvik, R., 2009. The non-linearity of risk and the promotion of environmentally sustainable transport. Accid. Anal. Prev. 41, 849–55.
- Jacobsen, P.L., 2003. Safety in numbers: more walkers and bicyclists, safer walking and bicycling. Inj. Prev. 9, 205–209.
- Lee, C., Abdel-Aty, M., 2005. Comprehensive analysis of vehicle-pedestrian crashes at intersections in Florida. Accid. Anal. Prev. 37, 775–86.
- Lyon, C., Persaud, B., 2002. Pedestrian collision prediction models for urban intersections. Transp. Res. Rec. J. d, 102–107.
- Miaou, S.-P., Song, J.J., 2005. Bayesian ranking of sites for engineering safety improvements: decision parameter, treatability concept, statistical criterion, and spatial dependence. Accid. Anal. Prev. 37, 699–720.
- Schlüter, P., 1997. Ranking and selecting motor vehicle accident sites by using a hierarchical Bayesian model. J. R. ... 46, 293–316.
- Wang, Y., Nihan, N.L., 2004. Estimating the risk of collisions between bicycles and motor vehicles at signalized intersections. Accid. Anal. Prev. 3c. 313–321.

