

& Some Methodological Questions

Issues for study

- Bicycles are a growing part of urban road transportation in Canada and elsewhere
- Previous research on injuries has concentrated on human factors
 - driver errors
 - cyclist errors
 - helmet use
- This study concentrated on the environment where the injury occurred to look for risk factors

Bicyclists' Injuries & the Cycling Environment

Participating cities

Vancouver

- 2 participating hospitals
- 0.6 million people
- rain in winter, temperate summer
- lots of hills
- 26 km of bike lanes & paths per 100,000 population
- 3.7% of trips by bike

Toronto

- 3 participating hospitals
- 2.5 million people
- snow in winter, heat in summer
- mostly flat
- 11 km of bike lanes & paths per 100,000 population
- 1.7% of trips by bike

Study overview

Interview to map route & choose control sites

Observations of injury & control sites

"Case-crossover" design features

using conditional likelihood method in Proc Logistic person-trips, Comparisons cumulated over all

Study results

Participants & Trips

•	Toronto	273
•	Vancouver	417 } 690
•	male	59%
•	19 to 39 years old	62%
•	income > \$50,000	56%
•	cycle > 52 times/year	88%
•	wore helmet wore high viz clothes	69% T 76% V 33%
•	trip < 5 km	68%
•	weekday, daylight	77%
•	commute	42%
•	other transport	32%

Factors significant only in univariate analyses

Bike signage

Parked cars

Junctions vs. none, # of junctions

Elevated injury risk, significant in one multiple regression model

Junction yes $OR_{RMM} = 3.0 (95\% CI: 1.3-7.1)$

of junctions OR $_{RMM} = 1.4 (95\% CI: 1.03-2.0)$

Junctions vs. none, # of junctions

Green paint to denote junction crossing to cyclists and drivers

Minimize junctions, "stroads"

Streetcar tracks vs. none

Elevated injury risk, both multiple regression models

 $OR_{RMM} = 3.7$

(95% CI: 2.1-6.4)

 $OR_{IMM} = 4.0$

(95% CI: 2.1-7.5)

Streetcar tracks vs. none

Downhill grades vs. flat

Elevated injury risk, both multiple regression models

 $OR_{RMM} = 3.1$

(95% CI: 1.8-5.3)

 $OR_{IMM} = 2.0$

(95% CI: 1.2-3.2)

Downhill grades vs. flat

Limitations

Toronto only analyses: smaller N, less power

- results reinforce those for Vancouver, whole study
- & demonstrate one difference

Most severe and mildest injuries not included

 those who attended emergency department within 24 hours

Not possible to test many route designs available in Europe

Toronto study team

- Lee Vernich
- Vartouji Jazmaji
- Kevin McCurley
- Andrew Thomas
- Doug Chisholm
- Nancy Smith Lea
- Fred Sztabinski
- David Tomlinson
- Barbara Wentworth

cyclingincities.spph.ubc.ca

@kteschke

Comparing RMM & IMM models

Forest plot showing ORs & 95% confidence limits