

Mapping Cyclist Activity and Injury Risk in a Network Combining Smartphone GPS Data and Bicycle Counts

PhD Candidate: Jillian Strauss
Supervisors: Luis Miranda-Moreno
& Patrick Morency

25th CARSP Conference, Ottawa, Ontario, May 27-30, 2015 25ème Conférence ACPSER, Ottawa, ON, 27-30 mai 2015

Background

- A high number of cyclist injuries occur every year in cities
 - Ex. Montreal 10 years from 1999-2008, 9,000 cyclists were injured
 - 62% at intersections
 - 38% along segments
- Given the importance of cyclist safety research has been carried out to identify risk factors and map risk in the network
 - Such research requires 3 main sources of data:
 - 1. Geo-coded injury data
 - 2. Geometric design and built environment characteristics
 - 3. Exposure measures cyclists and motor vehicles

Background

- In 2010 San Francisco Municipal Transportation Agency launched CycleTracks - Smartphone application
- In 2012 Georgia Tech launched Cycle Atlanta Smartphone application
- Both applications have 3 purposes:
 - 1. Collect cyclist trip data see where cyclists are riding
 - 2. Gauge current infrastructure
 - 3. Guide future planning
- Based on these applications: In 2013 the city of Montreal developed their own smartphone application, Mon RésoVélo - to serve similar purposes

Objectives

- This study aims to:
 - Combine smartphone GPS traces and manual and automatic, short-term (hours) and long-term (months and years) counts to estimate:
 - Average annual daily bicycle volumes
 - Injuries
 - Risk

throughout the entire Montreal network of road segments and intersections

- 1. Assign the GPS traces to the network elements
 - Map all raw GPS observations (x,y)
 - Use buffer approach to assign to segments and intersections
 - 35 metres to capture most trips

- 2. Obtain AADB volumes from short-term and long-term counts and develop an extrapolation function for the GPS data
 - Compute AADB at manual count sites from permanent counter data
 - Develop a function to associate this AADB with GPS flows:

$$AADB_{ik} = \beta_k \cdot T_{ik} + \alpha_k \quad \text{with} \quad \alpha_k = f(x_i; \gamma)$$

where:

 $AADB_{ik}$ = average annual daily bicycle volume at location *i* of type *k*

i= network element *i* of type *k* (signalized intersection, non-signalized intersection or segment)

 β_k = parameter weighing the number of GPS traces denoted as T_i

 α = correction factor associated with geometric design and/or built environment characteristics

- 3. Validate the predicted AADB from GPS data through the development of Safety Performance Functions (SPF)
 - Develop SPF models with both sources of bicycle flow data
 - Compare parameter coefficients and variable significance
- 4. Apply the predicted AADB for segments and intersections for safety applications
 - Map flows, injuries and risk throughout the entire network
 - Identify hotspots

Data – Bicycle Counts

• Smartphone GPS trips:

- Cyclist trip data from Mon RésoVelo smartphone application
 - When cyclists begin their trip they start the app and upon arriving at their destination, they stop the app
 - July 2nd to November 15th, 2013 (137 days)
 - 1,000 cyclists
 - 10,000 trips
 - 16 million GPS points
- Short- and long-term bicycle counts:
 - 8-hour manual counts at over 600 signalized intersections in 2009
 - 1-hour manual counts at over 400 non-signalized intersections in 2012
 - Long-term counts along different road segments since 2008

Data - Injuries

- 6 years, 2003-2008, from ambulance interventions
 - Over 5,000 cyclists injured at intersections
 - Over 3,500 cyclists injured along segments

AADB Models

Signalized Intersections			Non-Signalized Intersections			
Variable	Coef.	P>z	Variable	Coef.	P>z	
GPS count - No facilities	11.5	0	GPS count - No facilities	1.28	0	
GPS count - Bicycle path	6.71	0	GPS count - Bicycle path	1.15	0	
GPS count - Cycle track	17.43	0	GPS count - Cycle track	4.14	0	
Distance to downtown*	-15.34	0	Distance to downtown*	-24.1	0	
Constant	238.4	0	Constant	378.4	0	
R-squared	0.696		R-squared	0.58		

Segments							
Verieble	Cycle Track		Bicycle Path		No Facility		
Variable	Coef.	P>z	Coef.	P>z	Coef.	P>z	
GPS flow	20.1	0	9.4	0	46.6	0.001	
Constant	1557.1		1387.1		1579.8		
R-Squared	0.52		0.76		0.27		

AADB maps

	AADB from manual		AADB from GPS	
Variable	counts		trips	
	Coef.	P-value	Coef.	P-value
Ln* bicycle flow	0.510	0.000	0.531	0.000
Ln* right turn motor-vehicle flow	0.174	0.008	0.156	0.012
Ln* left turn motor-vehicle flow	0.138	0.012	0.131	0.013
Crosswalk width	0.010	0.002	0.010	0.002
Bus stop	0.468	0.002	0.595	0
Raised median	-0.478	0.002	-0.475	0.002
Constant	-6.53		-6.57	
Log-likelihood	-621.1		-628.2	
AIC	1258.1		1272.5	

^{*} Ln = natural logarithm

	Variable	Coef.	Std. Err.	P-value	
Signalized Intersections	Ln* bicycle flow	0.330	0.017	0	
	Bus stop	0.413	0.081	0	
	Three approaches	-0.685	0.114	0	
	Constant	-2.57	0.139	0	
	Alpha	0.796			
	AIC	5141			
	Observations (entire population)	2288			
Non-Signalized Intersections	Ln* bicycle flow	0.385	0.011	0	
	Arterial or collector	1.048	0.047	0	
	Three approaches	-0.913	0.041	0	
	Constant	-3.94	0.070	0	
	Alpha	1.539			
	AIC	19384			
	Observations (entire population)	23819			
Segments	Ln* bicycle flow	0.336	0.020	0	
	Arterial or collector	0.684	0.052	0	
	Downtown boroughs	0.495	0.071	0	
	Constant	-4.99	0.091	0	
	Alpha	5.187			
	AIC	14963			
	Observations (entire population)	44314			

Risk maps

Intersections with and without arterials

Signalized intersections

Non-signalized intersections

Intersections with and without cycle tracks

Number of injury for EB and Rate of injury for EB Risk of injury for EB Risk - No Cycle Track Excludes outside values

Non-signalized intersections

Conclusion

- Explored the use of smartphone GPS data to estimate exposure measures for the entire network
 - Validated for signalized intersections remains to be validated for non-signalized intersections and segments
- Mapped bicycle flows and risk in the entire network
 - Can be used to identify hotspots and accounts for the entire population of sites
- Overall findings
 - Cyclist risk is greatest outside the central neighbourhoods of the island which is also where infrastructure is lacking
 - Cyclist injuries and risk are highest for intersections compared to segments

Thank you

Questions?

