

MOTORCYCLE ACCIDENT CAUSE FACTORS AND IDENTIFICATION OF COUNTERMEASURES VOLUME I: TECHNICAL REPORT

H.H. Hurt, Jr. J.V. Ouellet D.R. Thom

Traffic Safety Center University of Southern California Los Angeles, California 90007

Contract No. DOT HS-5-01160 Contract Amount \$501,814.00

JANUARY 1981 FINAL REPORT

This document is available to the US, public through the National Technical Information Service,
Springfield, Virginia 22161

Prepared For

U.S. DEPARTMENT OF TRANSPORTATION
National Highway Traffic Safety Administration
Washington, D.C. 20590

1981*

Motorcycle ctarismes gollistipale Typh scles

^{*}Hurt, Ouellet, & Thom (1981)

Typical Right-of-Way Violation

Common belief: Collisions are due to conspicuity Motorcycles are difficult to detect because they are small

Countermeasures:

Daytime running lights

Typewa

Countermeasures:

Headlight modulators

TV TO THE VI

Countermeasures:

Fluorescent jackets

Threewa

Does enhanced conspicuity reduce collisions?

Does enhanced conspicuity reduce collisions?

If motorcycle collisions are due to poor conspicuity, And if we have improved motorcycle conspicuity,

Then why have failure-to-see collisions *increased*?

Are these collisions really due to poor conspicuity? Are motorcycles even inconspicuous?

Change-Blindness

Are motorcycles less conspicuous than cars?

Demo

Change-Blindness

Are motorcycles less conspicuous than cars?

Change Blindness is a measure of attention

We notice changes for attended objects

Are motorcycles detected less frequently than cars?

Sager et al. (In Review)

 ${
m I}_{
m 95\%}$ Confidence Interval

Static Change-Blindness: Discussion

Motorcycles are visible:

Higher detection rates than cars

Similar detection times to cars

Saliency (Sensory Conspicuity)

Contrast

Saliency (sensory conspicuity)

Orientation

Saliency (sensory conspicuity)

Spatial Frequency

Saliency (sensory conspicuity)

Colour

Saliency maps and Gaze Maps

Perception is More than Sensation

Context Intention Memory

Car and Motorcycle Gaze Maps

Static Change-Blindness: Discussion

Motorcycles are not invisible:

Higher detection rates

Similar detection times

Similar gaze maps

Saliency maps do not predict gaze maps

Solving motorcycle collisions through conspicuity Is solving a problem that <u>does not exist</u>

And it is solving it the wrong way

But these images were static

What happens when people actually drive?

30

Ss Drove down a straight road
Screens flickered once
A parked vehicle was removed
Ss indicate change detection

Motorcycles are detected more frequently than cars

Ss Drove toward intersection

Screens flickered once

A vehicle was removed on half the trials

(entering or exiting)

(car or motorcycle)

Ss indicate change detection

SDT: Was ist das?

Target present Target Hit reported Target not Miss reported

195% Confidence Interval

Dynamic Change-Blindness: Discussion

Results replicate findings from static change blindness experiments

Motorcycles are not invisible:

Higher sensitivity for motorcycles than for cars

Conclusion

Motorcycles are (very) visible.

Why?

Sensory conspicuity is not the issue.

Efforts should be directed at education

Because the problem is likely a judgement issue

Acknowledgments

Daniel M. Bernstein

Farhad D. Dastur

David J. Froc

RAs

Dawn-Leah McDonald John Dema-ala Kevin Smith Carley Wood Andrew Lowery Amaris Tok Jackie King

Aaron Richardson

Additional Slides

Braking Behaviour

Additional Results

Additional Results

Additional Results

