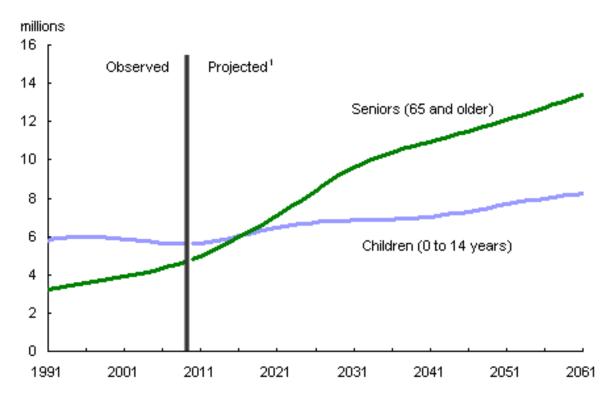


Type of Vehicle, Speeding, and Acceleration Patterns of Older Drivers During Everyday Driving

Andrew Cull

Michelle M. Porter¹, PhD; Satoru Nakagawa, PhD¹; Glenys A. Smith, MSc¹; Mark Rapoport, MD², FRCPC; Shawn C. Marshall, MD, MSc, FRCPC³; Michel Bédard, PhD⁴; Holly Tuokko, PhD⁵; Brenda Vrkljan, PhD⁶; Gary Naglie, MD, FRCPC⁷; Anita Myers, PhD⁸; Isabelle Gélinas, PhD⁹; Barbara Mazer, PhD⁹


2015-05-29

¹Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB; ²Department of Psychiatry, University of Toronto, Toronto, ON; ³Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON; ⁴Centre for Research on Safe Driving, Lakehead University, Thunder Bay, ON; ⁵Centre on Aging, University of Victoria, Victoria, BC; ⁶School of Rehabilitation Science, McMaster University, Hamilton, ON; ⁷Department of Medicine and Rotman Research Institute, Baycrest Health Sciences, Research Department, Toronto Rehabilitation Institute, University Health Network, Department of Medicine and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON; ⁸School of Public Health & Health Systems, University of Waterloo, Waterloo, ON; ⁹School of Physical & Occupational Therapy, McGill University, Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain, Montreal, QC

Introduction

1. Medium-growth scenario.

Source: Statistics Canada, CANSIM tables 051-0001 and 052-0005.

Introduction

 Vehicle performance, mass, and height influence on driving patterns

 Seat height shown to influence speed in simulators with young drivers

Hypothesis

Vehicle class will effect speeding and acceleration patterns

 Explore Speeding and Hard Acceleration and Braking Patterns:

- Study 1:
 - What happens after purchase of different vehicle?
- Study 2:
 - Naturalistic driving

Data

- Collected from the CanDrive Study
 - Actively Driving ≥ 1 year
 - ≥ 70 years of age
 - Drives at least 4x week
 - Intends to continue to drive 5 years
 - Have a recording device installed into their vehicle

Data

 Vehicle Classification based on 2014 Canada Fuel Guide

 Cars and Station Wagons into 8 categories by Interior Volume

Trucks, Vans, and SUVs into 6 categories by Gross
 Vehicle Weight

Data

• Study 1 (n=51):

- Acquired a different vehicle
- ≤ 15 days of missing data between vehicle change
- 25 days of driving before and after
- ≥ 100 km of driving in the 25 days

• Study 2 (n=493):

 25 days of usable driving from May to September in first year of study

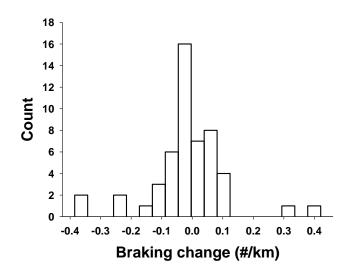
Outcome Variables

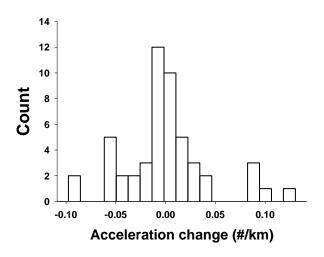
- G Force Infractions:
 - ≥ 0.274 or ≤ -0.274 [Jun et al, 2007]

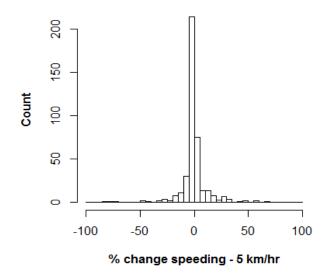
- Speeding:
 - ≥ 5 and ≥ 10 km/h over posted speed limit
 - 40-110 km/h
- p value < 0.05 was deemed significant

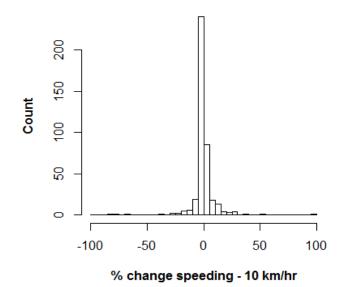
Statistical Analysis

Study 1:


- Pre/Post G Force (per km & per stop): Wilcoxon
 Signed Rank Test
- Speeding: Two way repeated measures ANOVA


Study 2:


- Vehicle Class collapsed to Car or Other
- G Force (per km & per stop): Linear Regression
- Speeding: Multiple Linear Regression @ Speed Limits
- Differences between Gender, Vehicle Type, and Age: Wilcoxon Signed Rank Test


	n	Min (age)	Max (age)	Mean (age)	Std Dev (age)	Median (age)
М	30	71	89	77.5	4.6	76
F	21	71	90	77.4	4.7	76
Combined	51	71	90	77.5	4.6	76

Test	p value
G Force: Acceleration per km	0.58
G Force: Braking per km	0.25
G Force: Acceleration per Stop	0.91
G Force: Braking per Stop	0.45
Speeding: ≥ 5 km/h	0.34
Speeding: ≥ 10 km/h	0.54

	n	Min (age)	Max (age)	Mean (age)	Std Dev (age)	Median (age)
Men	287	70	93	77.4	5.1	77
Women	206	70	89	76.4	4.4	76
Combined	493	70	93	77.0	4.8	76

G Force:

	Adjusted R ²	Significant Predictors
Acceleration per km	0.027	Age*, Vehicle Class**
Braking per km	0.060	Age**, Gender**, Vehicle Class**
Acceleration per stop	0.035	Vehicle Class**
Braking per Stop	NA	

Note: * p<0.05, ** p<0.01, *** p<0.001

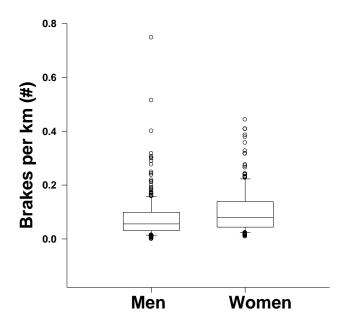
Speeding (Note: * p<0.05, ** p<0.01, *** p<0.001):

≥ 5 km/h

Speed Limit (km/h)	n	Adjusted R ²	Significant predictors
50	493	0.018	Age***
60	448	0.016	Age**
70	458	0.016	Gender**
80	414	0.022	Age*
90	284	0.020	Gender***
100	372	0.085	Age***, Gender**

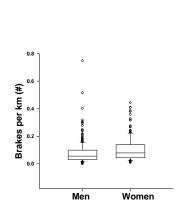
Speeding (Note: * p<0.05, ** p<0.01, *** p<0.001):

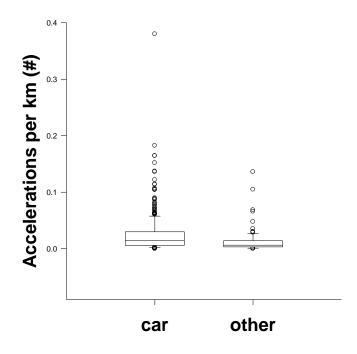
≥ 5 km/h


Speed Limit (km/h)	n	Adjusted R ²	Significant predictors
50	493	0.018	Age***
60	448	0.016	Age**
70	458	0.016	Gender**
80	414	0.022	Age*
90	284	0.020	Gender***
100	372	0.085	Age***, Gender**

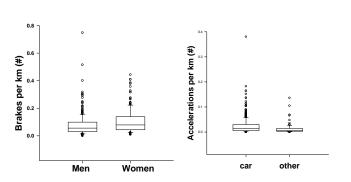
≥ 10 km/h

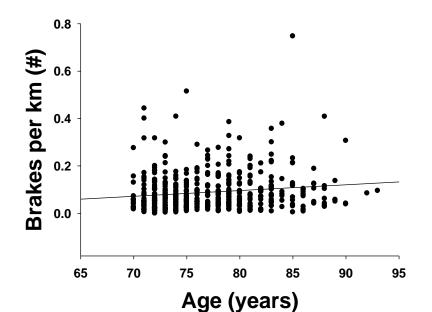
Speed Limit (km/h)	n	Adjusted R ²	Significant predictors
80	414	0.015	Age***, Gender*, Vehicle
			Class*
100	372	0.048	Age***, Gender**


Comparison


	p value
Gender Effect: Hard Brakes per km	< 0.001

Comparison


	p value
Gender Effect: Hard Brakes per km	< 0.001
Vehicle Class: Accelerations	< 0.001



Comparison

	p value
Gender Effect: Hard Brakes per km	< 0.001
Vehicle Class: Accelerations	< 0.001
Age: Hard Brakes per km	< 0.001

Limitations

Lag time between device switch

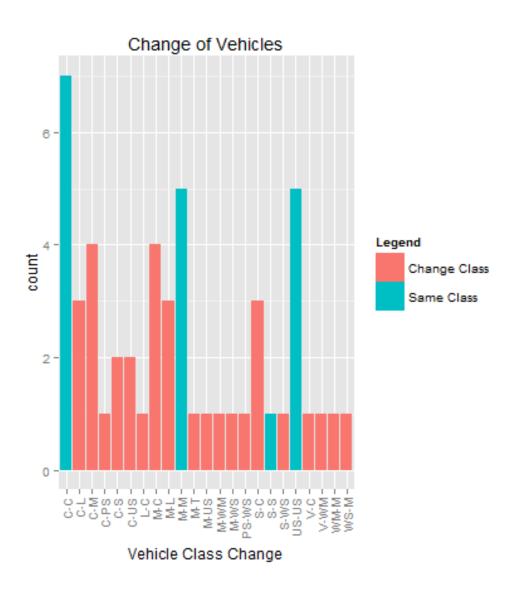
- Only GPS information, NO video information
 - Are they driving with the 'flow' of traffic?

Conclusion

 Vehicle Class has little to no impact on older drivers speeding or hard acceleration / brakes

Speeding was prevalent among older drivers

 Further research is needed to determine what effect the variables have on the safety of older drivers


Thank You

