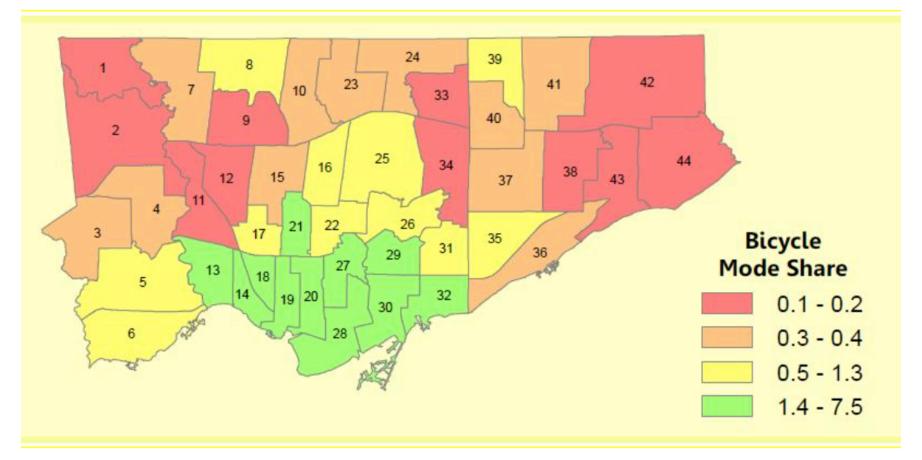


Image: The Toronto Star

Examining the impact of cycle lanes on cyclist-motor vehicle collisions in Toronto, Ontario

Deepit Bhatia, Sarah Richmond, Jennifer Loo, Linda Rothman, Colin Macarthur, Andrew Howard Hospital for Sick Children, Toronto, ON Canada

SickKids research institute


Introduction

The proportion of people riding their bike to work or school in Toronto increased by over 30% between 2001-2006 and continues to increase.

The majority of utility and commuter trips in Toronto occur in and around the downtown core.

Introduction

Toronto Cycling Think & Do Tank. Mapping Cycling in Toronto. 2013.

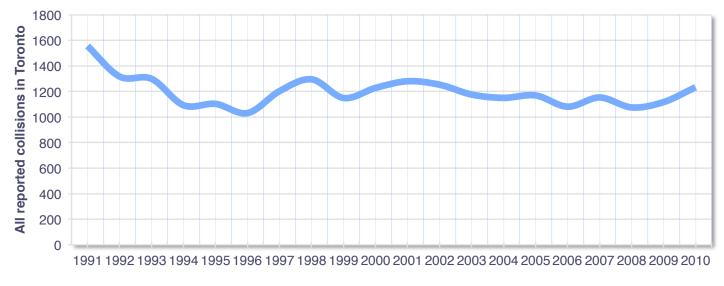
Introduction

	Signed	Cycle	Sharrow	Cycle	Multi-Use
	Routes	Lanes	Lanes	Tracks	Trails
	THIS ENDS		073		
Network Length	302 km	207 km	21.3 km	6.3 km	294 km
On-Road	✓	✓	✓	✓	
Visual Separation		1		•	✓
Spatial Separation				1	1
Reserved for Cyclists		1		✓	

How can cycle lanes/tracks work?

Visual separation – promote driver attentiveness

Physical separation – reduce the frequency of cyclists and motor vehicles crossing paths


Removal of on-street parking – reduced risk of "dooring" collisions

Safety in numbers – individual risk decreases as number of cyclists increase

Rationale

Despite an increase in cycling infrastructure, no drastic change in # of collisions between cyclists and motor vehicles.

Year

Lack of strong evidence concerning the use of painted cycle lanes – which make up >200 km of Toronto's network.

To determine the change in collision frequency and injury severity after the installation of cycle lanes on high-volume roadways.

Methods

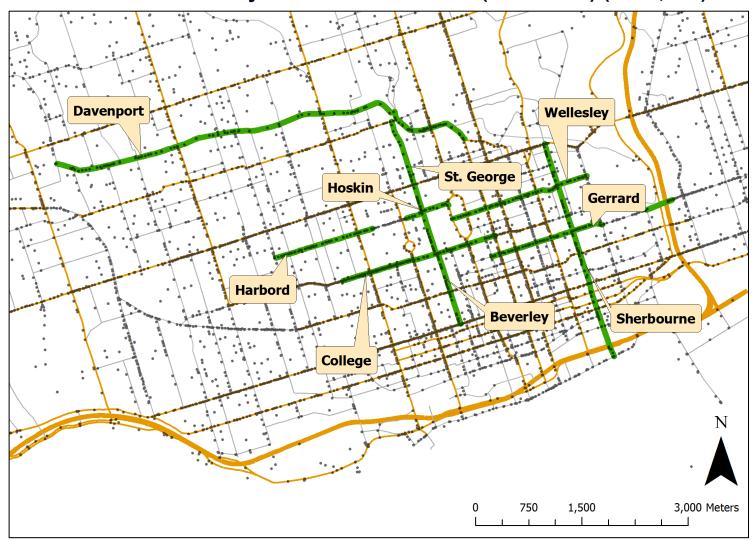
Data Sources

- City of Toronto, police-reported CMVC reports (1991-2010)
- City of Toronto, 7 high-traffic cycle lanes in Toronto (>100 reported collisions between 1991 and 2010)

Unit of Analysis

Segment-Month

Analysis


- Quasi-experimental pre-post design
- Zero-inflated Poisson regression analysis, adjusting for month of collision and lane segment

Results

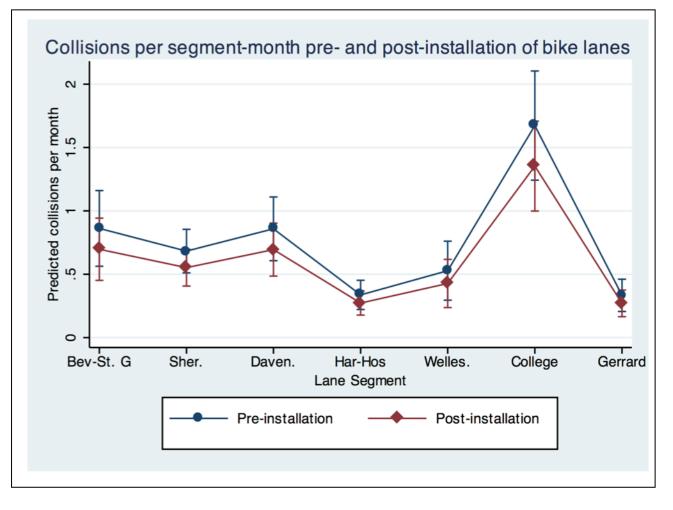
- 23,959 collisions between cyclists and motor vehicles were reported in the City of Toronto
- 329 of these occurred on the 7 lane segments included in this analysis
- 180 were pre-installation and 149 were postinstallation.

Downtown Toronto cycle lanes and CMVCs (1991-2010) (n=23,959)

Data Sources: City of Toronto, Toronto Police Service, Jennifer Loo

Results – included lane segments

Lane Segment	Install date (dd/ mm/yyyy)	Pre period length	Post period length
BEVERLEY-ST. GEORGE	01/08/1993	2 years	2 years
SHERBOURNE	01/09/1996	2 years	2 years
DAVENPORT	01/05/1994	2 years	2 years
HARBORD- HOSKIN	01/08/1997	2 years	2 years
WELLESLEY	01/11/2008	2 years	2 years
COLLEGE	01/10/1993	2 years	2 years
GERRARD	01/08/1995	2 years	2 years



Results – Analysis

	IR per 100 segment- months (pre)	IR per 100 segment- months (post)	Model	IRR
All lanes (65.22	53.99	0.8109	(0.65, 1.01)
Beverley-St. George	91.7	62.5	.ed.	-16 (-34, 2.0)
Sherbourne	61.7	63.3	n fi	-13 (-27, 1.0)
Davenport	85.8	64.2	isio s:	-16 (-34, 12)
Harbord- Hoskin	33.3	28.3	e in collision freq. months:	-6.0 (-13, 1.0)
Wellesley	58.3	33.3	ge i 00 r	-10 (-21, 1.0)
College	179.2	145.8	Change per 100 I	-32 (-66, 2.0)
Gerrard	31.25	29.2	be Ch	-6.0 (-13, 1)
No injury	1.087	<u>5.435</u>	5.00 (1.	44, 17.28)
Minimal/minor	24.28	20.29	0.84 (0.	58, 1.20)
Major/fatal	28.98	21.74	0.72 (0.	51, 1.01)

Results – Analysis

Discussion

- Non-significant decreases were observed overall and for collisions causing any injury
- Underestimates the true association due to a lack of viable exposure data
- Commuter cycling has increased in popularity since 1996 by over 50%²
- Installing cycle lanes in Toronto has led to an increase in cyclist volume¹

^{1.} Macbeth, A. G. ITE Journal, 1999.

^{2.} Statistics Canada., Statistics Tables - Statistics - Reports & Studies, City of Toronto, 2014

Where the evidence fits in

Compared to other studies on the effect of cycle lanes on collision risk:

- Teschke et. al (OR = 0.69, 95%CI: 0.32, 1.48)
- Romanow et. al (OR = 0.64, 95%CI: 0.10, 4.19)
- Egan (IRR = 0.67)

Where the evidence fits in

Injury Prevention:

- Wee et. al: Crashes on roads twice as likely to result in hospitalizations compared to crashes on cycle lanes (RR = 1.97, p=0.023).
- Baker et. al: cycle lanes associated with increased odds of intersection (vs. mid-block) collision, but intersection collision injuries less likely to be severe.

Next steps

- More data needed on cycling volume control for "funneling" effect and/or model volumes using cross-sectional counts.
- Further research can also look at the distribution of BMVCs along each segment

THANK YOU!

