Young drivers' perceptions of in-vehicle alcohol devices

Marie Claude Ouimet, Ph.D., a,b,c Thomas G. Brown, Ph.D.d

email: Marie.Claude.Ouimet@USherbrooke.ca

- ^a Faculty of Medicine and Health Sciences, *Université de Sherbrooke*, Longueuil, Quebec, Canada
- ^b Charles Lemoyne Hospital Research Centre, Longueuil, Quebec, Canada
- c Réseau de recherche en sécurité routière du Québec
- d Department of Psychiatry, McGill University, Montreal, Quebec, Canada

INTRODUCTION

General context

- Alcohol misuse
 - One of the important factors associated with fatal crash risk (about 30% in Canada)
- Males vs. females
 - Higher involvement in alcohol-related arrests and severe injury and fatal crashes
 - More favorable attitudes, perceptions, and opinions about alcohol-impaired driving
- Young drivers at higher risk
 - Crashes = 1st cause of death for 15-29 years old

Technology to reduce alcohol-impaired driving

- Effectiveness demonstrated for laws and reinforcement
 - But hundreds of thousands of km of roads
 - Rates of arrests and crashes are quite high
 - Room for improvement?
- Can 'new' technology help reduce risks associated with alcohol-impaired driving?
 - Estimation of lives saved in the US with alcohol ignition interlocks
 - 10 000 lives in 2010 Lund et al. 2012
 - ♦ \$5% injury and fatal crashes Carter et al. 2015

What kind of 'new' technology?

- Different types of devices
 - Control: Vehicle does not start, users can't override device
 - Ignition interlock (used with offenders)
 - Feedback-control with extra steps necessary to override device
 - Feedback only

e.g., speed limiters, safety belt reminders, some in-vehicle active alcohol devices

Public support for different devices

- Opinions of representative US sample on alcohol ignition interlocks
 - 84% for offenders
 - 64% in all vehicles
 - 42% in their own vehicle
- To prevent impaired driving in general population
 - What about 'active' feedback-only or feedback-control devices?
 - What about 'passive' devices?
 - E.g., Driver Alcohol Detection System for Safety (DADSS)

Support for different devices

- Support from population is an important factor in implementation of interventions aimed at the general population
 - Can <u>prior exposure to technology</u> and <u>sex</u> play an important role?

Hypothesis

- Young drivers' perceptions of in-vehicle alcohol passive feedback devices will be more positive
 - with prior exposure
 - for females

METHODS

Participants

- Main inclusion criteria
 - 20-21 years old for current analysis
 - Provisional or full driving licence
 - Experience with drinking at least 2 drinks at same occasion
 - Driving at least one day per week in past months
- Main exclusion criteria
 - Alcohol dependance
 - Health problems
 - Consumption of alcohol or drugs (past 24 hrs)
 - Being pregnant or breastfeeding

Study design

Secondary analysis; two randomized controlled experiments on effects of alcohol on driving behavior

Exposure to alcohol device (procedure)

G1 ♣ No exposure to device

G2-G3

- Exposure to device during training session (alcohol-free)
- Participants had to decide to drive (or not) the simulator (under alcohol)
 - They had to select and performed one action among 3 risky (e.g., drive and arrive earlier) and 3 low risk scenarios (e.g., wait for taxi 15 minutes and then sit in passager seat during drive)
- 62 Control group: no exposure to device for decision making
- G3 + Experimental group: exposure to device for decision making

G1-G2-G3

Written description of device before filling out questionnaire

Driving simulator

- Driving simulation software developed at Université de Sherbrooke and implanted in our MamaSim
 - Smart Fortwo 2005
 - 150 degrees, semicircular screen
 - 3 projectors
 - One computer: Intel Core i7 Quad-core i7-930 -2.8GHz

In-vehicle alcohol feedback device

- Mock electronic device designed by research team to mimic characteristics of an alcohol passive device that could be installed in vehicles to measure driver BAC
 - Tissue spectrometry (touch-based system)
- For G2 and G3 (during training when participants were alcohol-free) device indicates: BAC lower than limit
- For G3 only (when participants were under alcohol) the device indicates: BAC higher than limit

Prototype presented by Ferguson in 2010

Mock electronic device desgined by research team

Questionnaire and analyses

- Acceptability and efficacy of in-vehicle alcohol feedback devices
 - Adapted from a questionnaire by McCartt et al. (2009)
 - Written description of device followed by questions
 - Responses ranged from 1 'totally disagree' to 7 'totally agree' further dichotomized into
 - 1-4: do not agree; 5-7: agree
- Demographics compared by exposure to device and sex
 - Anova, chi-square, and Kruskall Wallis
- Logistic regression
 - Exposure, sex, and interaction term

RESULTS

Participants

Variable	M or (%)	SD
Age at provisional licence ^a	17.93	1.14
Regular (or full) licence	(81.70)	
Kilometers driven in past week	112.47 ^b	166.77
Number of days driven in past week	3.54	2.51

Note. ^aMinimal licensing age in Quebec = 17; Significant sex difference with females licensed about 3 months earlier than males. ^bMedian = 47.5.

In-vehicle alcohol feedback devices...

	Variable	% agreeing ^a	Comparison	AOR ^{b,c}
will prevent crashes	All	87.4		
	G1	87.7	G2 vs. G1	ns
	G2	84.6	G3 vs. G1	ns
	G3	88.9	G3 vs. G2	ns
	M	87.1	F vs. M	ns
	F	87.7		
should be installed in all new vehicles	All	62.2		
	G1	47.9	G2 vs. G1	ns
	G2	69.2	G3 vs. G1	7.67*
	G3	86.1	G3 vs. G2	ns
	M	55.7	F vs. M	ns
	F	69.2		

^a Agreeing = responses 5 to 7 to question; Not agreeing = responses 1-4 to question; ^b Analyses account for exposure, age, and interaction term. Second series of analyses including age at licensing did not change results (not shown here). ^c * p < .05.

In-vehicle alcohol feedback devices...

	Variable	% agreeing ^a	Comparison	AOR ^{b,c}
should be installed in my vehicle	All	54.8		
	G1	38.4	G2 vs. G1	6.75*
	G2	69.2	G3 vs. G1	9.75*
	G3	77.8	G3 vs. G2	ns
	M	42.9	F vs. M	5.00*
	F	67.7		
are not needed or necessary for everyone	All	51.1		
	G1	60.3	G2 vs. G1	ns
	G2	42.3	G3 vs. G1	0.23*
	G3	38.9	G3 vs. G2	ns
	M	57.1	F vs. M	ns
	F	44.6		

^a Agreeing = responses 5 to 7 to question; Not agreeing = responses 1-4 to question; ^b Analyses account for exposure, age, and interaction term. Second series of analyses including age at licensing did not change results (not shown here). ^c * p < .05.

In-vehicle alcohol feedback devices...

	Variable	% agreeing ^a	Comparison	AOR ^{b,c}
will be inaccurate/	All	52.6		
malfunction	G1	67.1	G2 vs. G1	0.09*
	G2	34.6	G3 vs. G1	0.14*
	G3	36.1	G3 vs. G2	ns
	M	60.0	F vs. M	0.24*
	F	44.6		
raiges privately concerns for				
raises privacy concerns for me	All	31.1		
	G1	43.8	G2 vs. G1	0.15*
	G2	11.5	G3 vs. G1	0.26*
	G3	19.4	G3 vs. G2	ns
	M	37.1	F vs. M	ns
	F	24.6		

^a Agreeing = responses 5 to 7 to question; Not agreeing = responses 1-4 to question; ^b Analyses account for exposure, age, and interaction term. Second series of analyses including age at licensing did not change results (not shown here). ^c * p < .05.

DISCUSSION

Limitations

- Secondary analysis of two randomized controlled experiments
- Measurement of short-term effects of exposure
- Only 20-21 years old

Alcohol device: Better for others?

- Almost all participants agreed that in-vehicle alcohol feedback devices would prevent crashes, but lower agreement was found with installation in all or own vehicles
 - Some similarities with survey on alcohol interlocks

McCartt et al. 2009

Similar results found in general literature

Importance of exposure

- Public opinions are important in implementation of interventions in the general population
- We found, however, that participants introduced to device had more positive opinions about it than those who were not
 - Therefore, results suggest that participants should be first exposed to new technology to facilitate acceptance and possibly adoption
 - These findings should be accounted for in future surveys to more accurately assess the opinions of the population on in-vehicle devices (e.g., 1 week trial before survey)

Sex differences

- Females had more positive opinions about the device than males
 - Similar to other studies on attitudes, perceptions, and opinions
 - Suggest that implementation of passive devices should be accompanied by targeted approaches for young males and females

Granting agencies

Fonds de recherche Santé Québec 4 4

Programme de recherche en Sécurité routière FQRSC – SAAQ - FRSQ

Fonds de recherche Société et culture

Québec

Société de l'assurance automobile

Québec **

Fonds de recherche Santé

Québec 🖁 🖁

Thank you! Merci! Questions?

Email: Marie.Claude.Ouimet@USherbrooke.ca

Internship, M.Sc., Ph.D. and post-doc opportunities at the Faculty of Medicine and Health Sciences

Available funding?

Scholarships

Internship: according to duration

M.Sc.: \$15 000/year for 2 years

Ph.D.: \$19 000/year for 3 years

VDES-Med@USherbrooke.ca

Post-doc: to be determined

marie.claude.ouimet@usherbrooke.ca

