Should the SIMARD be used as the sole driver screening tool for determining fitness to drive?

ALEXANDER CRIZZLE,^{1,2} MEGHAN GILFOYLE,² DIANE MYCHAEL,³ NATASHA MEGER⁴

¹University of Saskatchewan, Saskatoon, SK, Canada ²University of Waterloo, Waterloo, ON, Canada ³St Joseph's Health Centre Guelph, Guelph, ON, Canada ⁴Saskatoon Health Region, Saskatoon, Canada

Background

- ▶ Older drivers fastest growing segment
 - ► Expected to double in the next decade
- ► Older drivers have higher collision rates/mileage
 - ▶ More serious injuries and fatalities (Staplin et al., 2003)
 - ▶ Begins around age 70 (Bedard et al., 2001; Dickerson et al., 2007)
- Determining the most effective means to identify, screen and assess medically at-risk drivers has become a major concern

S.I.M.A.R.D - M.D.

Screen for the Identification of the Cognitively Impaired Medically At-Risk Driver A Modification of the DemTect Dottes & Schopfocher (2010)

WORD LIST (Immediate Recall)					
"I will now allowly read you a list of 10 words. When I have immired, persons as many of these workts as possible. The order does not matter."					
Apple Ink Nail Bird Book Ticket Tree Chair House Simp	No				
Thank you. Now I will read you the same words again. Again, please repeat as many of these words as possible when I have finished.	Points				
Apple Ink Nail Bird Book Ticket Tree Chair House Ship					
NUMBER CONVERSION					
For this task, turn the page over and say: "As you can see from this example, we can write the number '5' as the word 'five'. This task is like writing out a	Score				
cheque. Please write the numbers in words." 209 = 4059 =	_/2				
SUPERMARKET TASK					
Please name as many things as possible that you can buy in a supermarket. You have one minute to do this Are you ready? Please begin.*	Score _/30				
REPEAT OF THE WORD LIST (Delayed Recall)					
"At the beginning of this test I read you 10 words. Tell me as many of those words as you can please."	Score				
Apple Ink Nail Bird Book Ticket Tree Chair House Ship	_/10				
Scoring Guide Number conversion x 10 =					
> 70 : High passing probability 31-70: Referral for a OriveABLE assessment recommended Supermarket Task x 1 = Repeat of Word List x 8 =					
≤ 30: Low passing probability Total Scores (Sum of calculated weighted scores					

For more information see www.DriveABLE.com.au/SIMARD

Screen for the Identification of Cognitive Impaired Medically At-Risk Drivers (SIMARD)

- Initial study with sample of 146 cognitively impaired seniors found that the SIMARD-MD predicted 86% and 84% to fail and pass a road test, respectively (Dobbs et al. 2010)
- A validation study with 192 cognitively impaired seniors similarly found that the SIMARD-MD predicted 80% and 87% of those predicted to fail and pass a road test, respectively (Dobbs et al. 2010).

Screen for the Identification of Cognitive Impaired Medically At-Risk Drivers (SIMARD)

- Other studies have identified limitations
- One study with a convenience sample of seniors aged 55 and older showed that the SIMARD has a high rate of falsepositives and false-negatives and classifies approximately 50% of the patients in the indeterminate range.²⁰
 - Sample didn't include persons with MCI/Dementia
 - Didn't assess on-road driving performance

Objective

► The purpose was to determine the SIMARD's sensitivity and specificity for predicting pass/fail on the road test in persons with cognitive impairment and/or dementia

Data Retrieval

▶ Data was collected from one driving assessment center in South-Western Ontario and in Saskatoon, Saskatchewan, respectively.

▶ Data was collected retrospectively from 2012-2015 and prospectively from 2015 to January, 2018

► Sample: 383 client records

Variables Collected

- ▶ Demographics (age, gender)
- Screen for the Identification of Cognitively Impaired Medically At-Risk Drivers [SIMARD]
- ► Montreal Cognitive Assessment [MoCA]
- ► Trails A & B
- ► Useful Field of View [UFOV]
- On-road pass/fail outcomes

Sample Characteristics	Mean (SD)
(N=81)	or n (%)
Gender	
• Male	62 (76.5%)
• Female	19 (23.5%)
Mean Age	75.6±9.9
	45 to 94 years
Prior Crashes	10 (12%)
Prior Citations	10 (12%)

Comorbid Diagnoses	N (%)				
 Hypertension 	18 (21.4%)				
Arthritis	11 (13.1%)				
• Diabetes	11 (13.1%)				
• Stroke	6 (7.1%)				
 Depression 	5 (6%)				

- ► Pass/Fail (n=81)
 - ► Pass (n=35; 43.2%)
 - ► Fail (n=46; 56.8%)

	Total (N=81)	Pass (n=35)	Fail (n=46)	Significance
Age	75.6±9.9 45 to 94	70.4±10.7 45 to 88	80.0±6.0 60 to 94	t=-5.51, p<.001
Gender	♂ 76.5% ♀ 23.5%	38.5% 7.7%	₹ 40.4% 13.5%	NS
SIMARD Mean	35.7±21.0 2 to 98	40.4±22.1 5 to 98	29.3±18.1 2 to 72	t=-3.357, p=001
SIMARD 30 or less 31 to 70 >70	33 (40.7%) 41 (50.6%) 6 (7.4%)	9 (11.1%) 22 (27.1%) 4 (4.9%)	24 (29.6%) 20 (24.7%) 2 (2.5%)	NS

(N = 81)	; -2 Lo		ression Mood = 75.19	odel 9; Nagelkerk	te R =	.469)
		Odds	Ratio Estir	nate		
CTS	DF	В	SE	Significance $(p < .05)$	e ^B	95% C
	1	.171	.048	>.001	1.19	1.08-1.3
(1)	1	C17	700	20	7 4	10601

EFFECTS	DF	В	SE	Significance (p < .05)	e^B	95% CI
Age	1	.171	.048	>.001	1.19	1.08-1.30
Gender (male)	1	617	.702	.38	.54	.136-2.14
Simard Mean Scores	1	043	.018	>.05	.99	.925992

AUC=.702; 95% CI: 059-.821

Cutpoint	<30	<46	<70
Sensitivity	.57	.75	.66
Specificity	.74	.70	.58
PPV	.74	.51	.11
NPV	.56	.87	.96
Error	.69	.55	.76

Regression Model (N = 81; -2 Log Likelihood = 55.45; Nagelkerke R = .56)								
Odds Ratio Estimate								
CTS	DF	В	SE	Significance $(p < .05)$	e^B	95% C		
	1	.241	.07	<.001	1.28	1.11-1.4		

EFFECTS	DF	В	SE	Significance $(p < .05)$	e^B	95% CI
Age	1	.241	.07	<.001	1.28	1.11-1.45
Gender	1	120	.82	.88	.887	.176-4.46
Simard 30-70 Less than 30	2	576 -2.17	4.18 4.21	.89 .61	.562 .114	0-2011.04 0.0-433.59

Conclusions

- ► The findings suggest that the SIMARD should not be used as a screening tool in isolation of other cognitive measures.
- ► Large number of referrals for road tests for those that fall in the indeterminate range not sensitive or specific enough
- Higher number of mis-classifications

Limitations

- ▶ Did not separate out MCI and Dementia patients
- ► Small sample size (CI's are wide)

Next Steps

- ► Merging of other CDE sites (larger database across 3 provinces)
- ► Re-do the analysis (validation study)

Questions?

Contact Information: Alexander Crizzle, PhD, MPH, CE **Assistant Professor** School of Public Health University of Saskatchewan

alex.crizzle@usask.ca