USING ORDERED MODELING TO IDENTIFY THE MOST SIGNIFICANT FACTORS THAT INCREASE THE SEVERITY OF SINGLE-VEHICLE COLLISIONS

Essam Dabbour, Ph.D., P. Eng.

June 2018

INTRODUCTION

- What is a single-vehicle collision.
- Single-vehicle collisions are significantly more severe than multi-vehicle collisions.
- 59.6% of the fatal collisions that occurred in the United States in 2014 were single-vehicle collisions.
- Why several research studies focus on single-vehicle collisions.
- Most research studies that investigated single-vehicle collisions were based on compiling data from different years into one dataset that was used for analysis.
- The risk factors identified in those studies might be temporally unstable.
- Understanding the temporal stability trends of those factors would help researchers assessing the effectiveness of implementing different safety treatments.

DATA COLLECTION

- Collision records were obtained from the Highway Safety Information System (HSIS).
- All light-duty single-vehicle injury collisions that occurred in North Carolina between 2007 and 2013.
- Collision records were classified into four injury levels:
 - a) Level 1: possible injury;
 - b) Level 2: evident non-disabling injury;
 - c) Level 3: disabling injury; and
 - d) Level 4: fatal injury (that resulted in death within 30 days of the collision).

DATA ANALYSIS

• Ordered probit modeling was used to estimate the latent injury risk propensity for collisions:

$$z_i = \beta X_i + \varepsilon_i$$

• The injury severity level is then estimated:

$$Y_{ij} = \begin{cases} 1 \text{ if } z_i < k_1 \\ 2 \text{ if } k_1 \le z_i < k_2 \\ 3 \text{ if } k_2 \le z_i < k_3 \\ 4 \text{ if } k_3 \le z_i \end{cases}$$

• k_1 ; k_2 ; and k_3 are thresholds for severity level *j*, which are estimated by the model.

PROBABILITY OF INJURY LEVEL

The probability that a certain driver, *i*, has different levels of injury severity, *j*, was then estimated:

•
$$P(Y_{ij} = 1) = P(z_i < k_1) = P((\beta X_i + \varepsilon_i) < k_1) = P(\varepsilon_i < (k_1 - \beta X_i))$$

- $P(Y_j = 2) = P(k_1 \le z_i < k_2) = P(\varepsilon_i < (k_2 \beta X_i)) P(\varepsilon_i < (k_1 \beta X_i))$
- $P(Y_j = 3) = P(k_2 \le z_i < k_3) = P(\varepsilon_i < (k_3 \beta X_i)) P(\varepsilon_i < (k_2 \beta X_i))$
- $P(Y_j = 4) = P(k_3 \le z_i) = 1 P(\varepsilon_i < (k_3 \beta X_i))$

RELEVANT RISK FACTORS

The following factors were investigated:

- a) Roadway-related factors: including the presence of a physical median, the speed limit on the roadway, whether the roadway has a straight or curved alignment, and whether the roadway is in an urban or a rural area;
- **b) Vehicle-related factors:** including travel speed and the type of the light-duty vehicle;
- c) Driver-related factors: including age, gender, being influenced by alcohol, and the use of seatbelt;
- d) Lighting condition factor: whether the collision occurred during daylight, during nighttime on an illuminated roadway; or during nighttime on an unilluminated roadway and
- e) Environmental-related factors: including weather and road surface conditions.

RESULTS (2007 – 2010)

Parameter	2007	2008	2009	2010
Threshold k ₁	0.790 (0.034)	0.733 (0.035)	0.940 (0.038)	1.067 (0.041)
Threshold k ₂	2.193 (0.038)	2.158 (0.039)	2.381 (0.043)	2.547 (0.046)
Threshold k ₃	2.713 (0.042)	2.654 (0.043)	2.846 (0.047)	3.028 (0.050)
Darkness	NS ^(a)	NS ^(a)	0.042 (0.022)	NS ^(a)
Over speed limit	0.290 (0.023)	0.283 (0.024)	0.312 (0.024)	0.278 (0.025)
Favor. env. cond. ^(b)	0.145 (0.027)	0.123 (0.025)	0.135 (0.024)	0.190 (0.026)
Spring season	0.050 (0.025)	NS ^(a)	NS ^(a)	0.086 (0.026)
Rural highway	0.070 (0.023)	0.067 (0.024)	0.096 (0.024)	0.074 (0.024)
Undivided highway	NS ^(a)	0.076 (0.031)	NS ^(a)	NS ^(a)
Highway curve	0.110 (0.022)	0.109 (0.023)	0.119 (0.023)	0.121 (0.023)
Vehicle type ^(c)	0.116 (0.022)	0.069 (0.023)	0.098 (0.023)	0.138 (0.023)
Young driver ^(d)	-0.554 (0.024)	-0.069 (0.027)	NS ^(a)	NS ^(a)
Senior driver ^(e)	0.300 (0.052)	0.316 (0.048)	NS ^(a)	NS ^(a)
Male driver	0.111 (0.023)	0.143 (0.024)	0.127 (0.023)	0.153 (0.023)
Influenced driver	0.253 (0.028)	0.268 (0.029)	0.276 (0.030)	0.305 (0.029)
Seatbelt not properly used	0.786 (0.029)	0.752 (0.030)	0.718 (0.030)	0.740 (0.031)

RESULTS (2011 – 2013)

Parameter	2011	2012	2013	Overall
Threshold k ₁	0.960 (0.039)	0.999 (0.045)	1.045 (0.041)	0.823 (0.014)
Threshold k ₂	2.438 (0.044)	2.439 (0.049)	2.485 (0.046)	2.260 (0.016)
Threshold k ₃	2.948 (0.049)	2.914 (0.053)	2.919 (0.050)	2.741 (0.017)
Darkness	0.071 (0.018)	NS ^(a)	NS ^(a)	0.024 (0.009)
Over speed limit	0.289 (0.025)	0.242 (0.025)	0.333 (0.026)	0.284 (0.009)
Favor. env. cond. ^(b)	0.135 (0.028)	0.103 (0.027)	0.134 (0.026)	0.140 (0.010)
Spring season	NS ^(a)	NS ^(a)	NS ^(a)	0.038 (0.010)
Rural highway	NS ^(a)	0.116 (0.026)	0.098 (0.024)	0.078 (0.010)
Undivided highway	NS ^(a)	0.086 (0.032)	NS ^(a)	0.050 (0.012)
Highway curve	0.396 (0.024)	0.195 (0.024)	0.123 (0.024)	0.149 (0.009)
Vehicle type ^(c)	NS ^(a)	0.081 (0.024)	0.121 (0.024)	0.105 (0.009)
Young driver ^(d)	NS ^(a)	NS ^(a)	NS ^(a)	-0.036 (0.010)
Senior driver ^(e)	NS ^(a)	NS ^(a)	NS ^(a)	0.259 (0.018)
Male driver	0.124 (0.024)	0.167 (0.024)	0.115 (0.024)	0.136 (0.009)
Influenced driver	0.256 (0.030)	0.338 (0.030)	0.238 (0.031)	0.289 (0.012)
Seatbelt not properly used	0.616 (0.033)	0.727 (0.032)	0.713 (0.032)	0.732 (0.012)

CONCLUSIONS

- Six risk factors were found to be temporally stable, including:
 - a) driving over the speed limit,
 - b) failing to properly use seatbelt,
 - c) driving in favorable environmental conditions,
 - d) driving on a highway curve,
 - e) being a male driver, and
 - f) being influenced by alcohol.
- Four factors were found to be temporally unstable, including:
 - a) driving on an undivided highway,
 - b) darkness conditions,
 - c) spring season, and
 - d) being a senior driver (above 65 years).

THANK YOU