



### Safety Evaluation of the Variable Speed Limit System In British Columbia

BC Ministry of Transportation and Infrastructure

John E. Babineau, P. Eng.

**District Program Engineer** 

Mohamed Elesawey, Ph.D., P.Eng.

Sr. Highway Safety Engineer

June 12, 2018



### Outline

- Background
- System Overview
- Research Objective
- Methodology
- Results
- Conclusions





### Background







### Background







### System Overview





### System Overview

### Highway 1 - Perry River Bridge to Highway 23 Junction





### System Overview

Highway 5 –Portia Interchange to former Toll Plaza





### System Overview

**Highway 99- Squamish Valley Road to Function Junction** 







### System Overview



VARIABLE SPEED CORRIDOR BEGINS

### **MAXIMUM**

120 km/h UNLESS OTHERWISE POSTED

MAX

km/h UNLESS OTHERWISE POSTED

ENTERING VARIABLE SPEED CORRIDOR





### Research Objective

Safety evaluation of the VSLSs

- Highway 1 from Perry River to Highway 23 Junction (Revelstoke)
- Highway 5 from Portia Interchange to the former Toll Plaza



### **Analysis Methodology**

- Simple Before and After
- Empirical Bayes with Safety Performance Functions (SPFs)
- Data of three groups of sites were needed for the analysis:
  - Treatment/Evaluation Sites
  - Reference Sites
  - Comparison Sites





### Analysis Methodology: Data

#### Evaluation Sites

- 23 sites on two corridors
- 108.5 km total length

#### Reference Sites

- To develop SPFs needed for the evaluation
- RAU2 and RFD4 highway segments

#### Comparison Sites

Account for history and maturation





### Analysis Methodology: Data

#### Collision Data

- Winter season serious collisions only (fatal + injury) before and after VSLS implementations
- Five winter seasons before data
- One winter season after data

#### Traffic Volumes

Seasonal average of daily traffic volumes





### **Empirical Bayes Method**

$$O. R. = \frac{D}{\widehat{B}_{CG}}$$

$$E(O.R.) = \frac{O.R.}{(1 + \frac{Var\widehat{B}_{CG}}{\widehat{B}_{CG}^{2}})}$$

#### Where:

 $\hat{B}_{CG}$  = EB safety estimate of collisions in the treatment group had no treatment taken place during post improvement period,

D = Observed number of collisions in the treatment group during post improvement period.





### **Empirical Bayes Method**

$$(EB_i)_b = \gamma_i \cdot \mu_i + (1 - \gamma_i) \cdot y_i$$
 $Var(EB_i)_b = \gamma_i \cdot (1 - \gamma_i) \cdot \mu_i + (1 - \gamma_i)^2 \cdot y_i$ 

$$\gamma_i = \frac{1}{1 + \frac{\mu_i}{k}}$$

#### Where:

 $y_i$  = Observed collisions in the before period for location i

 $\gamma_i$  = Weight assigned to the predicted value for location I

k = Dispersion parameter of the negative binomial model

 $\mu_i$  = Expected collision frequency at location i





### **Empirical Bayes Method**

$$\widehat{B} = (EB_i)_a = (EB_i)_b \times \frac{(\mu_i)_a}{(\mu_i)_b}$$

$$Var\widehat{B} = Var(EB_i)_a = Var(EB_i)_b \times \left[\frac{(\mu_i)_a}{(\mu_i)_b}\right]^2$$

#### Where:

 $(EBi)_a$  = EB safety estimate of treated site *i* in the "after" period had no treatment taken place.

 $(EBi)_b$  = EB safety estimate of treated site *i* in the "before" period.

 $(\mu_i)_a$  = Expected mean collision frequency given by the SPF for a treated site





$$\widehat{B}_{CG} = \frac{\frac{C}{A} \times \widehat{B}}{\left(1 + \frac{1}{A}\right)}$$

$$Var\widehat{B}_{CG} = \widehat{B}_{CG}^{2} \times \left[ \frac{1}{A} + \frac{1}{C} + \frac{1}{\widehat{B}} \right]$$

Where:

C = observed number of collisions in the comparison group during the after period

A = observed number of collisions in the comparison group during the before period

 $\hat{B}_{CG}$  = corrected EB estimate of collisions in the treatment group during the after period





- Comparison groups suitability test
- O.R. mean value

|       | O.R. |          |  |
|-------|------|----------|--|
|       | Mean | Variance |  |
| Hwy 1 | 1.06 | 1.569    |  |
| Hwy 5 | 0.99 | 0.031    |  |



### Results: Simple Before and After







#### Without Comparison Group

| Highway | Change in WSC * | Standard Error | T-statistic | 95% Significance |
|---------|-----------------|----------------|-------------|------------------|
| 1       | -25.4%          | 0.306          | 0.83        | Insignificant    |
| 5       | -54.0%          | 0.153          | 3.54        | Significant      |
| Overall | -45.0%          | 0.141          | 3.20        | Significant      |

#### With Comparison Group

| Highway | Change in WSC | Standard Error | T-statistic | 95% Significance |
|---------|---------------|----------------|-------------|------------------|
| 1       | -1.0%         | 0.428          | 0.02        | Insignificant    |
| 5       | -63.1%        | 0.124          | 5.07        | Significant      |
| Overall | -49.8%        | 0.131          | 3.79        | Significant      |

<sup>\*</sup> Winter Serious Collisions



## Results: Empirical Bayes Method

#### **Developed SPFs**

RAU2  $\mu = 0.00263 V_i^{0.7349} * L_i^{0.8053}$  k = 3.61

RFD4  $\mu = 0.01826 * V_i^{0.4641} * L_i^{0.9442}$  k = 3.00

#### Where:

 $\mu$  = Expected number of serious collisions in 5 winter seasons

 $V_i$  = SADT volume at a particular location

 $L_i$  = Length of a particular road section in km

k = Dispersion parameter of the negative binomial model





### Results: Empirical Bayes Method

| Highway | Change in WSC* | Standard<br>Error | T-statistic | 95%<br>Significance |
|---------|----------------|-------------------|-------------|---------------------|
| 1       | +8.5%          | 0.469             | 0.18        | Insignificant       |
| 5       | -52.3%         | 0.162             | 3.22        | Significant         |
| Overall | -37.4%         | 0.166             | 2.26        | Significant         |

<sup>\*</sup> Winter Serious Collisions



### Conclusions

- Significant reduction in WSC on Hwy 5
- Insignificant change in WSC on Hwy 1 with large standard error
- Small sample size only one season of after data
- Further evaluation to be done upon data availability





# Questions?