PRE-CRASH PATH DETERMINATION USING STABILITY CONTROL DATA

Provincial Constable Amir Agha-Razi, P.Eng

Ontario Provincial Police (O.P.P.)

Objectives

► To determine the path of a vehicle prior to the crash without utilizing road evidence

► To verify the intrusion path and determine exact time and location where the vehicle crossed the centerline

Requirements

- ► At least one vehicle with Event Data Recorder (EDR) is required to obtain:
 - ► Vehicle Velocity
 - ► Electronic Stability Control Data
- Area of Impact
- Scaled scene diagram

How does it work?

- Use Speed of the vehicle over 0.1 second intervals
- Translate ESC data to lateral and longitudinal "movement" every 0.1 second
- Assemble the points to form a curve for desired length of time
- Project the plotted path on the roadway using area of impact as reference
- Adjust for road geometry
- Verify movement along a curve using steering data if available

"Movement"

Requires:

- ▶ Object to travel from point A to point B
- Travel the distance between A and B at a <u>velocity</u> during a <u>time interval</u>

BASICALLY, VELOCITY VECTOR WITH DIRECTION AND MAGNITUDE

Example

Pre-Crash Data -5 to 0 sec [10 samples/sec] (Second Record)

Times (sec)	Steering Wheel Angle (degrees)	Stability Control Lateral Acceleration (g)	Stability Control Longitudinal Acceleration (g)	Stability Control Yaw Rate (deg/sec)	Stability Control Roll Rate (deg/sec)		
- 5.0	5.0	-0.085	-0.069	-0.37	0.62		
- 4.9	3.7	-0.066	-0.049	-0.12	0.25		
- 4.8	4.2	-0.062	-0.09	-1.0	-0.25		

Stability Control Yaw Rate (deg/sec)

 Represents the angular velocity (ω) around the vertical axis of the vehicle

Rate of change in the heading (deg/sec)

Stability Control Yaw Rate (deg/sec)

Stability Control Yaw Rate (deg/sec)

1.
$$\frac{v\Delta t}{\theta} = r$$

2.
$$\sin \theta x r = \sin \beta x d$$

3.
$$\beta = 90 - \alpha$$

4.
$$\theta = 2 \alpha$$
 or $\alpha = \frac{\theta}{2}$

5.
$$2 \sin \alpha x r = d$$

6.
$$d = 2 \sin \alpha x \frac{v\Delta t}{\theta}$$

7.
$$d = 2 \sin \alpha x \frac{v\Delta t}{2\alpha}$$

8. $d = \sin \alpha x \frac{v\Delta t}{\alpha}$

8.
$$d = \sin \alpha \, x \frac{v \Delta t}{\alpha}$$

X and Y

$$x = d \cos \alpha$$
$$y = d \sin \alpha$$
$$d = \sin \alpha x \frac{v\Delta t}{\alpha}$$

Where:

 α = heading change(deg) v = instantaneous velocity (m/s) Δt = time period (s)

Crash Test

- Low speed, head-on collision
- ► Encroachment of one vehicle into path of another
- Comparison between EDR data analysis, road evidence and data obtained from onboard data recorders

Test Location

- ► City of Kingston, Ontario
- ► Fire Department training facility
- ▶2 lanes, 3.85 meters each
- ► Slight curve to north west

Test Vehicles

2008 Chevrolet Uplander

1998 Volkswagen Jetta

Instrumentation

- ► Stock EDR
- ► CAN BUS data logger
- Delphi OBDII harness
- ► Two 3D accelerometers
- Positioning/tracking system
 - ► 12 satellite GPS
 - 6 satellite GLONASS

EDR MOUNT LOCATION

POSITIONING SYSTEM

LOGGER/ACCELEROMETER

LOGGER/ACCELEROMETER

Wheelbase = 287 cm Overall length = 485 cm Overall width = 183 cm Weight distribution 55/44

	D	E	G	Н	1	N	Р	Q	R	S	Т	U	V	W	Х	,
	GPS Latitude (deg)	GPS Longitude (deg)	Distance (m)	Speed (mph)	EDR Speed (mph)	YawRate Z (deg/sec) - CCW	Distance Moved (m)	Sideway Movement (cm / - To Left)	Forward Movement (m)	Cumulative Sideways (cm)	Cumulative Forward (m)	CM Adjusted (cm)	Left Front Corner from centre line (cm)	Target Location (cm)	Overlap (cm)	
	44.2634354	-76.51699066	40.55	30.44		0.78	1.36	0.92	1.36	10.11	40.38	Amir:				
1	44.2634506	-76.51698303	41.91	30.45		0.50	1.36	0.60	1.36	10.70	41.74	LAT/LONG WHERE PHASE CENTRE CR		2000000000		
5	44.2634621	-76.51698303	43.27	30.44		0.41	1.36	0.49	1.36	11.19	43.11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VTRE LINE -	. 0.15 2 2 1 1 1 1		
7	44.2634735	-76.5169754	44.63	30.50	31	0.47	1.36	0.56	1.36	11.75	44.47	GPS/TRACK MAP				
3	44.2634811	-76.51696777	45.99	30.48		0.27	1.36	0.33	1.36	12.08	45.83				CATION OF CM ALTIVE TO GPS PHASE	
)	44.2634926	-76.51696014	47.35	30.37		-0.27	1.36	-0.33	1.36	11.75	47.19			CENTRE - SEE SLIDES		,,,
)	44.263504	-76.51695251	48.72	30.61		-0.78	1.36	-0.92	1.36	10.83	48.55		/			
	44.2635193	-76.51695251	50.08	30.44		-0.98	1.37	-1.17	1.37	9.67	49.92	-45	-137	-96		
2	44.2635307	-76.51694489	51.44	30.54		-0.98	1.36	-1.16	1.36	8.51	51.28	-46	-138	-96		
}	44.2635384	-76.51693726	52.81	30.38		-0.96	1.37	-1.14	1.37	7.36	52.64	-47	-139	-96		
	44.2635498	-76.51692963	54.17	30.65		-1.14	1.36	-1.36	1.36	6.01	54.00	-49	-140	-96		
,	44.2635613	-76.51692963	55.53	30.20		-1.30	1.37	-1.55	1.37	4.46	55.37	-50	-142	-96		
,	44.2635765	-76.516922	56.86	29.44		-1.19	1.35	-1.40	1.35	3.05	56.72	-52	-143	-96		
7	44.263588	-76.51691437	58.14	27.70	27	-1.07	1.32	-1.23	1.32	1.83	58.04	-53	-144	-96		
3	44.2635956	-76.51690674	59.33	25.56		-1.21	1.24	-1.30	1.24	0.52	59.28	-54	-146	-96		
)	44.2636032	-76.51690674	60.45	24.27		-1.63	1.14	-1.63	1.14	-1.10	60.42	-56	-147	-96		
)	44.2636108	-76.51689911	61.49	22.62		-6.33	1.08	-5.99	1.08	-7.10	61.50	-62	-153	-96	57	
	44.2636108	-76.51689911	62.50	22.62		-10.35	1.01	-9.11	1.01	-16.21	62.51	-71	-162	-96	66	
	44.2636223	-76.51689911	63.30	12.93		-12.74	1.01	-11.20	1.00	-27.41	63.51	-82	-174	-96	78	

Results of calculated position and data obtained from instruments are in good agreement - within 5 cm both laterally and longitudinally.

For calculations and complete results visit https://www.yaworks.ca

Summary

- Obtain pre-crash path using stability control data
- Draw a scaled diagram of the scene
- Identify the area of impact (this will be you reference point)
- Place end of the calculated path (t = 0) at centermass/location of the EDR of the vehicle at first contact
- Evaluate the following scenarios
 - 1. Place the beginning of the path (t= -5) on the centerline
 - 2. Place the beginning of the path (t=-5) on the right edge of the roadway
- Use this method as a tool to compliment your analysis and calculations!

Vehicle crossed the centerline between point A and point B

Vehicle was travelling on the centerline prior to encroachment

Vehicle was travelling on the edge of the road prior to encroachment

Point B

QUESTIONS?

Special Thanks to:

Provincial Constable Chris Prent - Collision Reconstructionist

OPP East Region Highway Safety Division

Brain Monk - Senior Collision Investigator
Transport Canada

Melanie Jones - Chief Training Officer Kingston Fire and Rescue

Rogers Towing and Recovery

Carroll Towing and Recovery