PRE-CRASH PATH DETERMINATION USING STABILITY CONTROL DATA

Provincial Constable Amir Agha-Razi, P.Eng

Ontario Provincial Police (O.P.P.)

Objectives

- To determine the path of a vehicle prior to the crash without utilizing road evidence
- To verify the intrusion path and determine exact time and location where the vehicle crossed the centerline

Requirements

- At least one vehicle with Event Data Recorder (EDR) is required to obtain:
- Vehicle Velocity
-Electronic Stability Control Data
- Area of Impact
- Scaled scene diagram

How does it work?

- Use Speed of the vehicle over 0.1 second intervals
- Translate ESC data to lateral and longitudinal "movement" every 0.1 second
- Assemble the points to form a curve for desired length of time
- Project the plotted path on the roadway using area of impact as reference
- Adjust for road geometry
- Verify movement along a curve using steering data if available

"Movement"

- Requires:
- Object to travel from point A to point B
- Travel the distance between A and B at a velocity during a time interval

BASICALLY, VELOCITY VECTOR WITH DIRECTION AND MAGNITUDE

Example

Pre-Crash Data -5 to 0 sec [10 samples/sec] (Second Record)

Times $(\mathbf{s e c})$	Steering Wheel Angle (degrees)	Stability Control Lateral Acceleration (g)	Stability Control Longitudinal Acceleration (g)	Stability Control Yaw Rate (deg/sec)	Stability Control Roll Rate (deg/sec)
-5.0	5.0	-0.085	-0.069	-0.37	0.62
-4.9	3.7	-0.066	-0.049	-0.12	0.25
-4.8	4.2	-0.062	-0.09	-1.0	-0.25

Stability Control Yaw Rate (deg/sec)

- Represents the angular velocity (ω) around the vertical axis of the vehicle
- Rate of change in the heading (deg/sec)

Stability Control Yaw Rate (deg/sec)

Stability Control Yaw Rate (deg/sec)

1. $\frac{v \Delta t}{\theta}=r$
2. $\sin \theta x r=\sin \beta x d$
3. $\beta=90-\alpha$
4. $\theta=2 \alpha$ or $\alpha=\frac{\theta}{2}$
5. $2 \sin \alpha x r=d$
6. $d=2 \sin \alpha x \frac{v \Delta t}{\theta}$
7. $d=2 \sin \alpha x \frac{v \Delta t}{2 \alpha}$
8. $d=\sin \alpha x \frac{v \Delta t}{\alpha}$

X and Y

$$
\begin{gathered}
x=d \cos \alpha \\
y=d \sin \alpha \\
d=\sin \alpha x \frac{v \Delta t}{\alpha}
\end{gathered}
$$

Where:
$\alpha=$ heading change(deg)
$v=$ instantaneous velocity $(\mathrm{m} / \mathrm{s})$
$\Delta t=$ time period (s)

Crash Test

- Low speed, head-on collision
- Encroachment of one vehicle into path of another
- Comparison between EDR data analysis, road evidence and data obtained from onboard data recorders

Test Location

-City of Kingston, Ontario
-Fire Department training facility
-2 lanes, 3.85 meters each
-Slight curve to north west

Test Vehicles

2008 Chevrolet Uplander

1998 Volkswagen Jetta

Instrumentation

- Stock EDR
- CAN BUS data logger
- Delphi OBDII harness
- Two 3D accelerometers
- Positioning/tracking system
- 12 satellite GPS
- 6 satellite GLONASS

\square EDR MOUNT LOCATION

POSITIONING SYSTEMLOGGER/ACCELEROMETERLOGGER/ACCELEROMETER

Wheelbase $=287 \mathrm{~cm}$
Overall length $=485 \mathrm{~cm}$
Overall width $=183 \mathrm{~cm}$
Weight distribution 55/44

4	D	E	G	H	1	N	P	Q	R	S	T	U	V	W	X	Y
1	GPS Latitude (deg)	GPS Longitude (deg)	Distance (m)	Speed (mph)	EDR Speed (mph)	$\begin{gathered} \text { YawRate Z } \\ \text { (deg/sec) } \\ \text { - CCW } \end{gathered}$	Distance Moved (m)	Sideway Movement (cm / - To Left)	Forward Movement (m)	Cumulative Sideways (cm)	Cumulative Forward (m)	CM Adjusted (cm)	Left Front Corner from centre line (cm)	Target Location (cm)	Overlap (cm)	
74	44.2634354	-76.51699066	40.55	30.44		0.78	1.36	0.92	1.36	10.11	40.38					
75	44.2634506	-76.51698303	41.91	30.45		0.50	1.36	0.60	1.36	10.70	41.74	LAT/LON	NG WHERE			
76	44.2634621	-76.51698303	43.27	30.44		0.41	1.36	0.49	1.36	11.19	43.11	THE CEN	NTRE LINE -			
77	44.2634735	-76.5169754	44.63	30.50	31	0.47	1.36	0.56	1.36	11.75	44.47	GPS/TRA	ACK MAP			
78	44.2634811	-76.51696777	45.99	30.48		0.27	1.36	0.33	1.36	12.08	45.83			LOCATION	F CM	
79	44.2634926	-76.51696014	47.35	30.37		-0.27	1.36	-0.33	1.36	11.75	47.19			CENTRE - SE	EE SLIDES	
80	44.263504	-76.51695251	48.72	30.61		-0.78	1.36	-0.92	1.36	10.83	48.55					
81	44.2635193	-76.51695251	50.08	30.44		-0.98	1.37	-1.17	1.37	9.67	49.92	-45	-137	-96		
82	44.2635307	-76.51694489	51.44	30.54		-0.98	1.36	-1.16	1.36	8.51	51.28	-46	-138	-96		
83	44.2635384	-76.51693726	52.81	30.38		-0.96	1.37	-1.14	1.37	7.36	52.64	-47	-139	-96		
84	44.2635498	-76.51692963	54.17	30.65		-1.14	1.36	-1.36	1.36	6.01	54.00	-49	-140	-96		
85	44.2635613	-76.51692963	55.53	30.20		-1.30	1.37	-1.55	1.37	4.46	55.37	-50	-142	-96		
86	44.2635765	-76.516922	56.86	29.44		-1.19	1.35	-1.40	1.35	3.05	56.72	-52	-143	-96		
87	44.263588	-76.51691437	58.14	27.70	27	-1.07	1.32	-1.23	1.32	1.83	58.04	-53	-144	-96		
88	44.2635956	-76.51690674	59.33	25.56		-1.21	1.24	-1.30	1.24	0.52	59.28	-54	-146	-96		
89	44.2636032	-76.51690674	60.45	24.27		-1.63	1.14	-1.63	1.14	-1.10	60.42	-56	-147	-96		
90	44.2636108	-76.51689911	61.49	22.62		-6.33	1.08	-5.99	1.08	-7.10	61.50	-62	-153	-96	57	
91	44.2636108	-76.51689911	62.50	22.62		-10.35	1.01	-9.11	1.01	-16.21	62.51	-71	-162	-96	66	
92	44.2636223	-76.51689911	63.30	12.93		-12.74	1.01	-11.20	1.00	-27.41	63.51	-82	-174	-96	78	

Results of calculated position and data obtained from instruments are in good agreement - within 5 cm both laterally and longitudinally.

For calculations and complete results visit https://www.yaworks.ca

Summary

- Obtain pre-crash path using stability control data
- Draw a scaled diagram of the scene
- Identify the area of impact (this will be you reference point)
- Place end of the calculated path $(t=0)$ at centermass/location of the EDR of the vehicle at first contact
- Evaluate the following scenarios

1. Place the beginning of the path $(t=-5)$ on the centerline
2. Place the beginning of the path $(t=-5)$ on the right edge of the roadway

- Use this method as a tool to compliment your analysis and calculations!

Vehicle crossed the centerline between point A and point B

Vehicle was travelling on the centerline prior to encroachment

Vehicle was travelling on the edge of the road prior to encroachment

QUESTIONS?

Special Thanks to:

Provincial Constable Chris Prent - Collision Reconstructionist OPP East Region Highway Safety Division

Brain Monk - Senior Collision Investigator
Transport Canada

Melanie Jones - Chief Training Officer
Kingston Fire and Rescue

Rogers Towing and Recovery

Carroll Towing and Recovery

