Integration of roadside camera images and weather data for monitoring winter road surface conditions

29/05/19

Presented by: <u>Juan Carrillo</u> Candidate for MASc. in Computer Software Department of Electrical & Computer Engineering University of Waterloo

Thanks to Prof. Mark Crowley - Machine Learning Lab Prof. Liping Fu and Guangyuan Pan - ITSS Lab

Source: thestar.com

Agenda

- 1. Introduction
- 2. Datasets and area of study
- 3. Methodology and experiments
- 4. Conclusions

Winter road maintenance: Safety and resource optimization

Ontario. 50% of the total highway maintenance budget is spent on winter maintenance operations. <u>MTO</u>

Toronto. Annual budget of \$90 million to ensure that roads and sidewalks are clear and safe during the winter. theweathernetwork.com

Ottawa. The budget for winter operations in 2018 was \$68.3 million, \$2.3-million more than the previous year. <u>OttawaCitizen.com</u>

Winter road maintenance: Current approach

Road Weather Information Systems (RWIS)

Road patrolling visual inspection

Winter road maintenance: Suggested approach

Add **6x** more input data

(RWIS) + other MTO Cams + Env. Can Weather 84°0'0"W 78°0'0"W 81°0'0"W Data collection systems Ecoregions Lake Erie Lowland RWIS stations Manitoulin-Lake Simcoe St-Laurent Lowlands Other MTO cameras

Automated monitoring

Efficient decision making

Deep Learning for detecting road surface condition

Evaluate & improve

Better resource allocation, improved operations

Datasets and area of study

Road Weather Information System (RWIS)

Image source

139 stations in Ontario

Image source

- Roadside camera
- Weather sensors
- Embedded pavement sensors

Station NWR-06

Other MTO camera stations

Image source

439 cameras in Ontario

- Roadside camera
- Weather sensors
- Embedded pavement sensors

Environment Canada weather stations

Image source

- Roadside camera
- Weather sensors
- Embedded pavement sensors

99 stations in Ontario

Image source

Area of study

Ecoregion	Population density inhabitants/km²	Rank across Canada	
Lake Erie Lowland	344	2 nd	
St. Lawrence Lowlands	179	3 rd	
Manitoulin-Lake Simcoe	66	6 th	

Table 1. The three most densely inhabited ecoregions in Southern Ontario, StatCan 2016.

Nearest neighbor NN analysis

Туре	# of locations in Ontario	Avg. distance to NN (km)	# of locations in three populous ecoregions
RWIS	139	38.4	68
Other MTO	439	7.2	364
RWIS + MTO	578	9.4	432

Table 2. Adding other MTO roadside cameras to increase the number of images.

Туре	# of locations in Ontario	Avg. distance to NN (km)	# of locations in three populous ecoregions
RWIS	139	38.4	68
Env. Canada	99	35.8	45
RWIS + Env. Can	238	25.7	113

Table 3. Adding Environment Canada stations to interpolate weather data.

L-Function analysis

Figure 3. Multi-distance spatial cluster (L-Function) plots for: (a) RWIS stations, (b) other MTO cameras, and (c) Environment Canada stations.

Weather interpolation for MTO locations

Sample of weather data

- 40 RWIS + 40 Env. Canada = 80 stations
- Three weather variables
- No-snow and snowy days
- 480 observations in total

Cummoni	T1 - No snow - 2017/11/07 08:00			T2 - Snow - 2017/12/25 08:00		
Summary statistics	air temp. (°C)	wind speed (km/h)	pressure (kPa)	air temp. (°C)	wind speed (km/h)	pressure (kPa)
Mean	-1.921	4.912	99.950	-12.186	13.587	98.518
Std. dev.	5.195	6.419	2.809	9.509	11.128	2.782
CV%		131%	3%		82%	3%

Table 4. Summary statistics of three weather variables for a no-snow day and a snowy day.

Weather interpolation for MTO locations

Interpolation methods

- Inverse distance weighted (IDW)
- Radial Basis Function (RBF)
- Ordinary Kriging (OK)

Interpolation Method	T1 - No snow - 2017/11/07 08:00			T2 - Snow - 2017/12/25 08:00		
	Air temp. (°C)	Wind speed (km/h)	Pressure (kPa)	Air temp. (°C)	Wind speed (km/h)	Pressure (kPa)
IDW	2.054	6.073	3.094	4.139	8.761	3.053
RBF	1.971	6.156	3.001	3.898	8.718	2.963
Ord. Kriging	1.868	5.660	2.992	3.921	8.654	2.999

Table 5. Root Mean Square of three interpolation methods applied on a no-snow and snowy day.

Weather interpolation for MTO locations

For the three most populated ecoregions in Ontario

- By adding all other MTO cameras as image data sources to the RWIS system, six times more cameras are available.
- Adding weather stations from Environment Canada to the RWIS system increases the number of weather stations by 1.7x.

For weather interpolation in Ontario

 The best tradeoff between complexity and accuracy is offered by Radial Basis Functions (RBF).

Future work

Technical perspective

- Evaluate interoperability between different systems
- Include data from embedded pavement sensors

Policy and implementation perspective

- Design cooperation agreements
- Improve interaction with subcontractors

Questions

