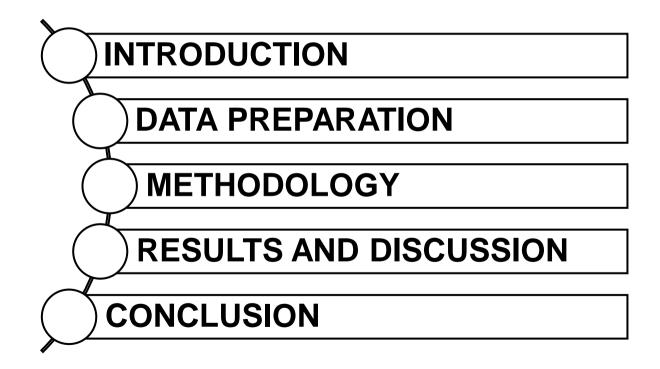
2022 CARSP Conference June 20, 2022 Sudbury

A Proactive Lane-changing Risk Prediction Framework Considering Driving Intention Recognition and Different Lane-changing Patterns

Qiangqiang Shangguan, Ting Fu, Junhua Wang, Shou'en Fang, Liping Fu

Tongji University University of Waterloo



1. INTRODUCTION

INTRODUCTION - Background

- Risky lane-changing (LC) maneuvers can often trigger turbulences in traffic flow
- About 5% traffic crashes and 7% fatalities in US are caused by lane-changing
- Proactive lane-changing risk prediction framework could be implemented in ADAS for improved driving safety

Lane-changing risk analysis

LC risk quantification

✓ Surrogate safety measure✓ Field theory

LC risk causation

- ✓ LC risk with traffic flow
- \checkmark LC risk with driving behavior

LC risk prediction

- ✓ Vehicle trajectory data
- ✓ Machine learning models

Lane-changing intention

Machine learning models

- ✓ Support vector machine
- ✓ Bayesian network
- ✓ Hidden Markov model
- ✓ Decision tree

□ Deep learning models

- Long Short-term Memory neural network
- ✓ Convolutional Neural Network

INTRODUCTION – Objectives

Research gaps

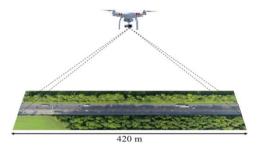
- LC intention recognition and different LC patterns (LC to left lane or LC to right lane) are ignored in existing risk prediction studies
- Suitable time window length to predict LC risk is still determined by prior knowledge
- Models are developed based on the driving data at a specific moment

Objectives

- A framework which combined LC intention recognition and LC risk prediction will be proposed
- The optimal time window length for LC intention recognition and risk prediction will be selected via grid search
- The key factors that influencing LC risk prediction will be analyzed

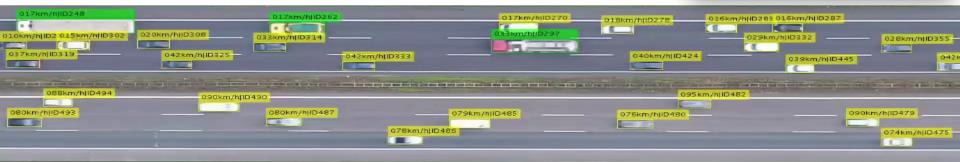
2. DATA PREPARATION

A naturalistic vehicle trajectories recorded on German highways using drone



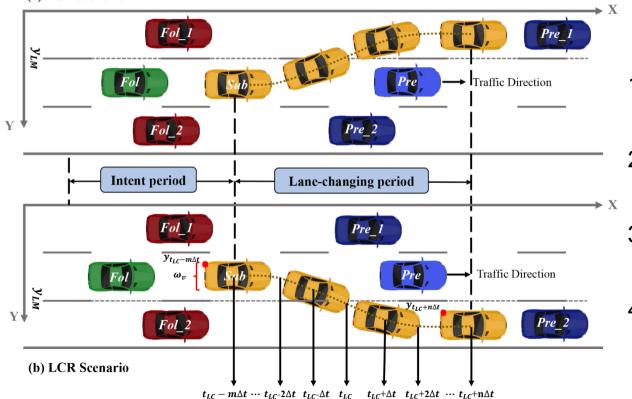
www.highd-dataset.com

- 147 driven hours
- 44,500 driven kilometers
- Six different recording locations
- Typical positioning error <10 cm</p>



DATA PREPARATION

(a) LCL Scenario

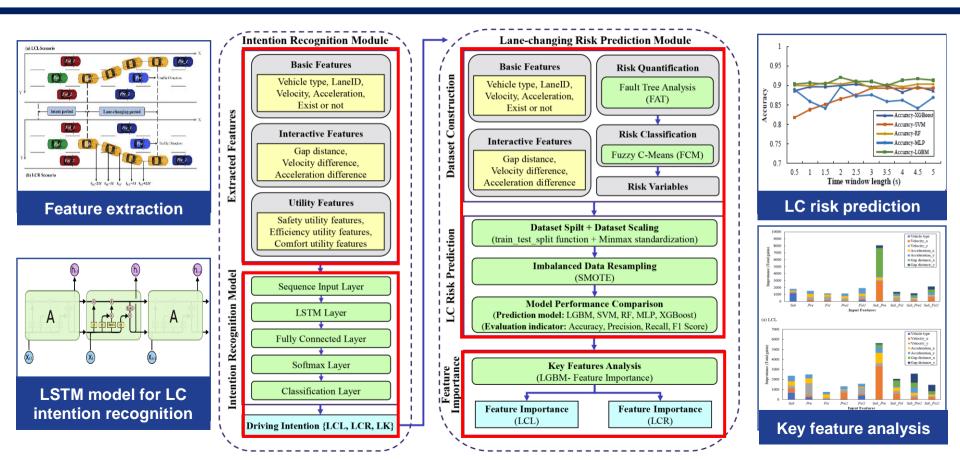


LC events extraction

- Determine the moment that lane ID changes.
- 2. Extract a whole LC event based on the y position
- 3. Remove the incomplete LC events
- 4. Extract the trajectory data of surrounding vehicles

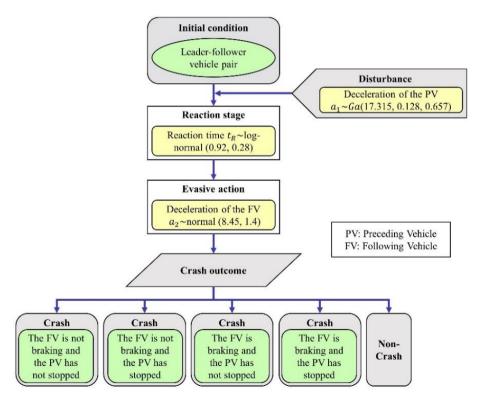
3. METHODOLOGY

METHODOLOGY - Whole Framework



UNIVERSITY OF

METHODOLOGY - LC Risk Level



Considering the whole process of rear-end crash

- ✓ Disturbance of preceding vehicle
- ✓ Driver's reaction stage
- ✓ Evasive action
- Considering the possibility and severity of rear-end crash
- ✓ Monto Carlo simulation method

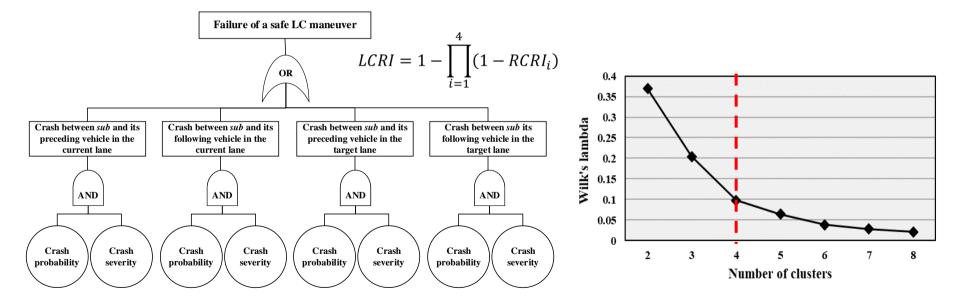
$$\checkmark RCRI_i = \frac{\sum_{j=1}^{N} crash_{ij} \times SASD_{ij}}{N}$$

Shangguan, Q., Fu, T.*, Wang J., Jiang R. & Fang, S. (2021). Quantification of rear-end crash risk and analysis of its influencing factors based on a new surrogate safety measure. *Journal of Advanced Transportation*, 2021.

METHODOLOGY - LC Risk Level

Fault tree analysis

Fuzzy C-means clustering



Shangguan, Q., Fu, T., Wang J.* & Fang, S. (2021). Quantification of cut-in risk and analysis of its influencing factors: a study using random parameters ordered probit model, *Journal of Transportation Safety & Security*, 2021: 1-26.

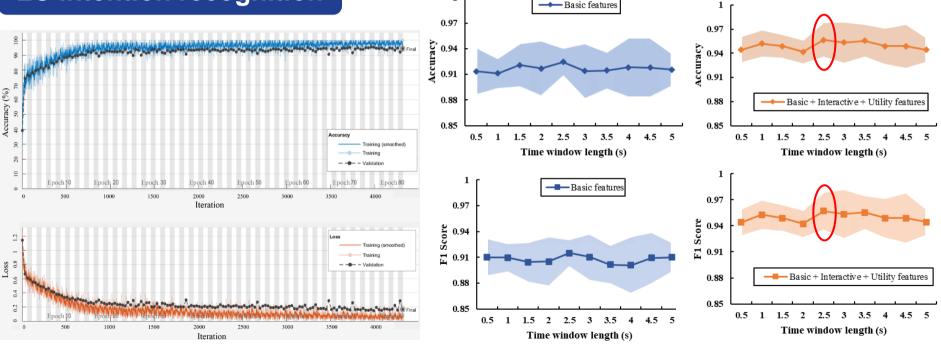
LC risk labelling criteria

Category	Criteria	LC type	Count (Proportion)
L orre right		LCL	846 (38.93 %)
Low-risk	$LCRI \leq 0.03$	LCR	878 (40.41 %)
Madinus viels	$0.03 < LCRI \le 0.11$	LCL	285 (13.12 %)
Medium-risk		LCR	77 (3.54 %)
TTich with	LCRI > 0.11	LCL	72 (3.31 %)
High-risk		LCR	15 (0.69 %)

4. RESULTS AND DISCUSSION

RESULTS AND DISCUSSION

LC intention recognition



1

Training process of LSTM neural network

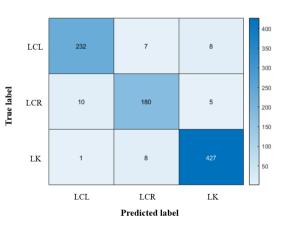
Accuracy and F1 score of LC intention recognition by time window length

RESULTS AND DISCUSSION

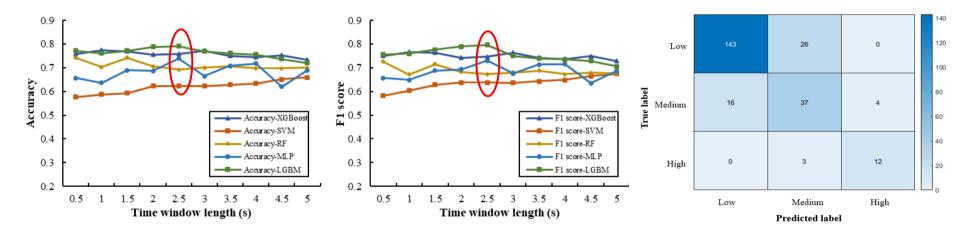
Comparison of intention recognition performance when time window length is 2.5 s

Model	Input features	LC intention	Accuracy	Precision	Recall	F1 score	
CNN		LCL	0.94	0.89	0.89	0.89	
	Basic features	LCR	0.93	0.82	0.88	0.85	
		LK	0.95	0.96	0.92	0.94	
	0	verall Accuracy $= 0.91$	Overall F	Overall F1 score = 0.89			
		LCL	0.95	0.90	0.90	0.90	
	Basic features + Interactive features + Utility features	LCR	0.95	0.87	0.88	0.88	
		LK	0.97	0.97	0.97	0.97	
	0	verall Accuracy $= 0.93$	Overall F	Overall F1 score = 0.92			
LSTM		LCL	0.96	0.93	0.91	0.92	
	Basic features	LCR	0.95	0.82	0.91	0.86	
		LK	0.95	0.97	0.94	0.95	
	0	verall Accuracy $= 0.92$	Overall F	1 score = 0.91			
		LCL	0.97	0.95	0.94	0.94	
	Basic features + Interactive features + Utility features	LCR	0.96	0.92	0.92	0.92	
		LK	0.97	0.97	0.98	0.97	
	O	Overall F	1 score = 0.95				

- LCL: Lane-changing to left lane
- LCR: Lane-changing to right lane
- LK: Lane-keeping

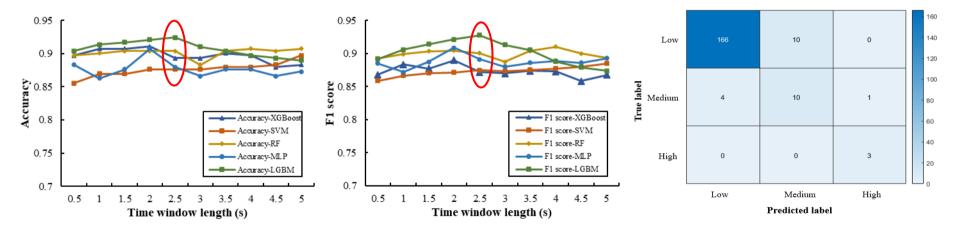


LC risk prediction – LC to left lane (LCL)



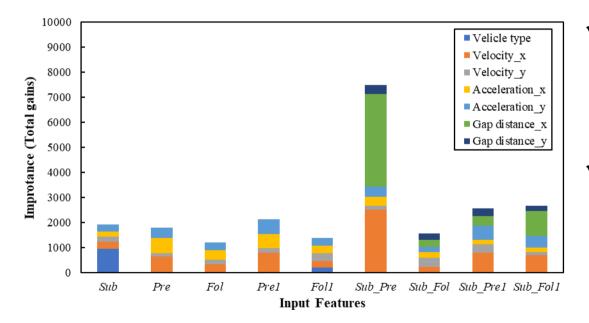
- Compared to several other machine learning algorithms, the Light Gradient Boosting Machine (LGBM) algorithm achieves higher prediction accuracy
- Except the Support Vector Machine (SVM) algorithm, other algorithms are not sensitive to the time window length

LC risk prediction – LC to right lane (LCR)



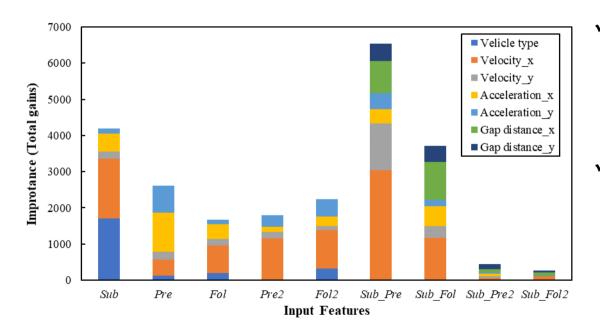
 ✓ When the time window length is 2.5 s and the LGBM algorithm is applied, the accuracy and F1 score of LCL and LCR risk prediction reach the highest value

Analysis of LCL risk influencing factors



- ✓ The interactive features between Sub and Pre have the highest feature importance
- The driver should pay more attention to the motion state of the preceding vehicle and following vehicle in the target lane

Analysis of LCR risk influencing factors



- ✓ The interactive features between Sub and Pre have the highest feature importance
- Driver also needs to avoid sudden deceleration to ensure the safety of the following car in the current lane

5. CONCLUSION

- LSTM performs better than CNN in driving intention recognition. When the input time window is 2.5 s, the prediction accuracy of LCL, LCR and LK are 97 %, 96 % and 97 %, respectively.
- Compared with several other machine learning models, the LGBM model is more suitable for LC risk prediction.
- During the LC process, the interaction characteristics of the LC vehicle and its preceding vehicle in the current lane have the greatest impact on the LC risk.

2022 CARSP Conference June 20, 2022 Sudbury

THANKS FOR YOUR ATTENTION Q&A

Shangguan, Q., Fu, T., Wang, J., & Fu, L. (2022). A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns. *Accident Analysis & Prevention*, *164*, 106500.

Qiangqiang Shangguan 1710912@tongji.edu.cn