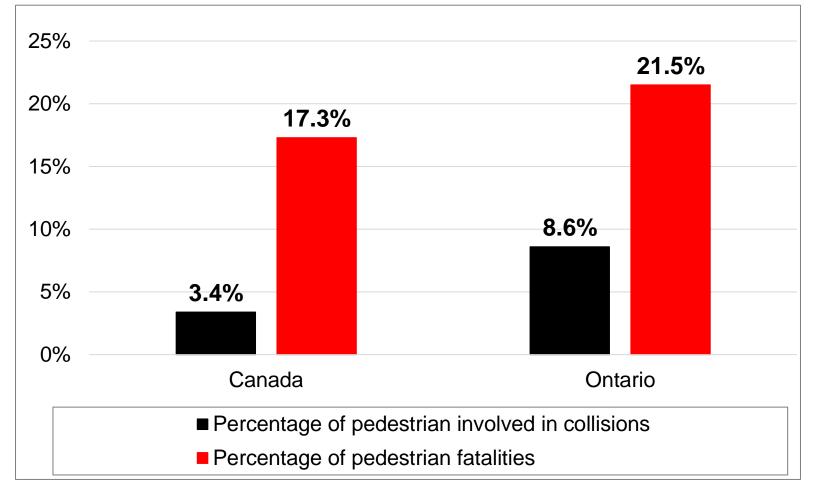
Identification of Collision-prone Zones Based on Pedestrian Violation Behaviours

Haniyeh Ghomi, Mohamed Hussein


McMaster University

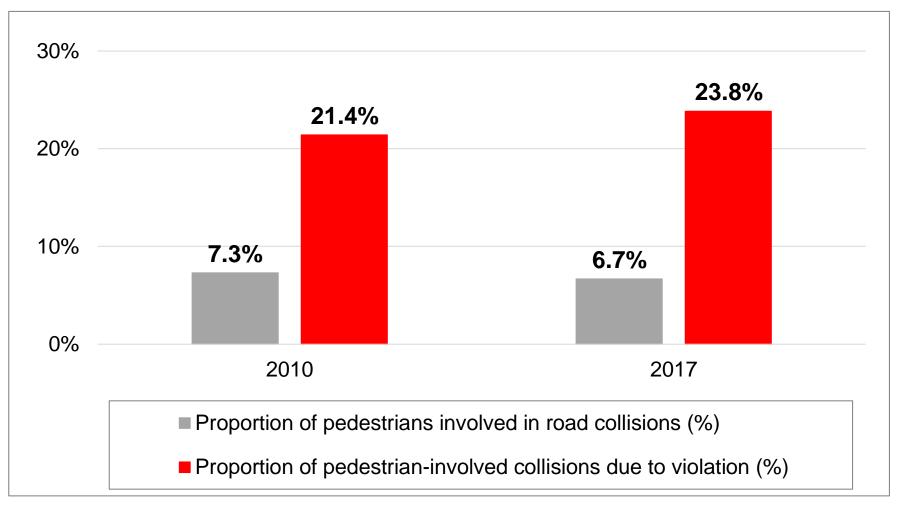
CARSP Conference 2022 Sudbury, Ontario June 19-21, 2022 Collaborating on the United Nations' (UN) Decade of Action for Road Safety

Pedestrian Collision Statistics in 2019 in Canada

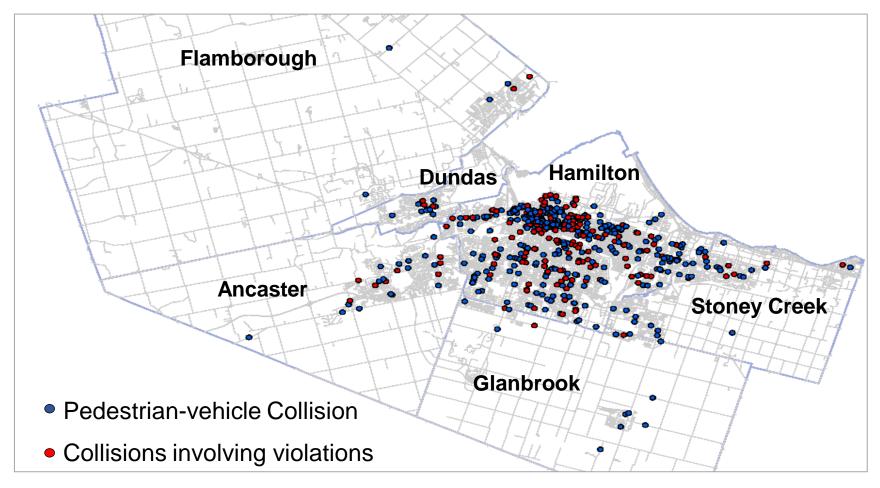
Pedestrian Unsafe Behaviours

Spatial violation

Crossing a roadway or an intersection at undesignated spaces


Temporal violation

Crossing a signalized crosswalk during undesignated signal phases


Pedestrian Collision Statistics in Hamilton

Spatial Distribution of the Pedestrian-related Collisions in the City of Hamilton

Objective

Full Bayesian Analysis Hotspots Identification

Support Vector Machine (SVM) model

 Identify the main contributing factors to both total collisions and collisions that involve pedestrian violations

main • Identify the collision- • rs to prone zones for both sions types of collisions

- and collisions that Rank them using the involve pedestrian Potential Safety violations Improvement (PSI) indicator
- Investigate the main differences between hotspots and nonhotspots

Data

8 years collision dataset (2010-2017)

- 2089 pedestrian-involved collisions
- 45 fatal collisions (2.15%) and 1859 injury collisions (88.99%)

Pedestrian Violation Statistics

509 collisions (24.4% of total collisions)

7

Potential Contributing Factors

Pedestrian Connectivity

Intersection density Degree of network coverage Complexity

Pedestrian Route Directness

Average edge length Linearity

Land use

Residential Density Commercial Density Institutional/Office Density

Exposure

Log (VKT) Log (PKT)

Built Environment

Signal Density Bus Stop Density

Socio-economic

Household Job

Full Bayesian Macro-level Prediction Models

Mean	Std Dov		
	Std. Dev.	Mean	Std. Dev.
7.861	1.92	21.207	1.44
-0.588	2.13	0.124	1.32
3.967	3.52	7.899	2.26
-0.0385	4.40	0.756	1.57
0.684	1.93	2.44	8.11
206.8	2.01	-113	1.4
-35.92	1.87	44.05	1.37
0.264	2.10	0.027	1.23
0.113	2.81	0.056	7.22
0.020	2.45	0.02	1.05
0.019	3.02	0.01	1.16
0.026	7.83	0.018	1.35
7.76	2.09	5.35	7.39
1.285	2.63	1.872	1.04
	-0.588 3.967 (0.0385) 0.684 206.8 (0.264) 0.264 0.113 0.020 0.020 0.020 (0.026) 0.026	-0.5882.133.9673.52-0.03854.400.6841.93206.82.01-35.921.870.2642.100.1132.810.0202.450.0193.020.0267.837.762.09	-0.5882.130.1243.9673.527.899-0.03854.400.7560.6841.932.44206.82.01-113-35.921.8744.050.2642.100.0270.1132.810.0560.0202.450.020.0193.020.010.0267.830.0187.762.095.35

ARSP+ACPSER

Key findings of Full Bayesian model

Same impact on both categories

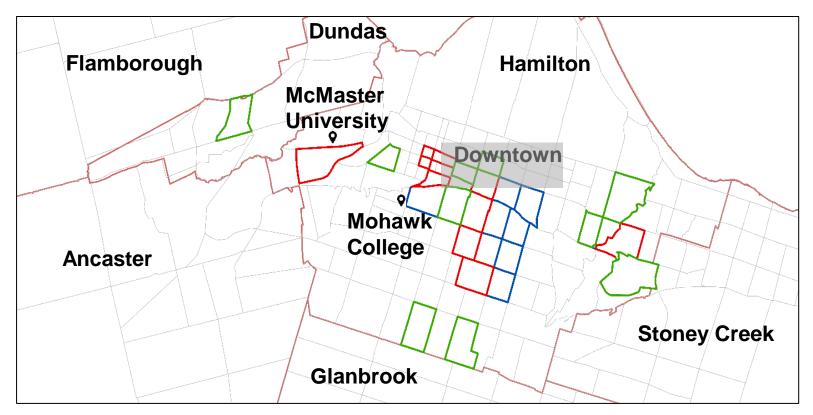
- Road user exposure
- Intersection density
- Network complexity
- Sidewalk linearity
- Socio-economic factor
- Land use

Variables	Total Collisions	Violation- related Collisions
Intersection Density	7.861	21.207
Degree of network coverage	-0.588	0.124
Complexity	3.967	7.899
Average edge length	-0.0385	0.756
Linearity	0.684	2.44
Signal Density	206.8	-113
Bus Stop Density	-35.92	44.05
Household	0.264	0.027
Job	0.113	0.056
Residential Density	0.020	0.02
Commercial Density	0.019	0.01
Institutional/Office Density	0.026	0.018
Log(VKT)	7.76	5.35
Log (PKT)	1.285	1.872

10

Key findings of Full Bayesian model

Different impact on both categories


- Degree of network coverage
- Average edge length
- Signal density
- Bus stop density

Variables	Total Collisions	Violation- related Collisions
Intersection Density	7.861	21.207
Degree of network coverage	-0.588	0.124
Complexity	3.967	7.899
Average edge length	-0.0385	0.756
Linearity	0.684	2.44
Signal Density	206.8	-113
Bus Stop Density	-35.92	44.05
Household	0.264	0.027
Job	0.113	0.056
Residential Density	0.020	0.02
Commercial Density	0.019	0.01
Institutional/Office Density	0.026	0.018
Log(VKT)	7.76	5.35
Log (PKT)	1.285	1.872

11

Identification of Collision-prone Zones

- Collision prone zones
- Violation prone zones
- Both collision and violation prone zones

Support Vector Machine Prediction

Criteria	Collision prone zones vs. non-collision prone zones	Hotspots in both scenarios vs. only collision prone zones
CCR	88.13%	87.44%
MAE	0.1186	0.1256
RMSE	0.1444	0.1706
Roc Area	0.869	0.826

Results of SVM Models

Variables	SVM Model 1	SVM Model 2
Intersection Density	0.9642	0.7595
Degree of network coverage	0.1887	0.0756
Complexity	0.5417	0.5085
Average edge length	0.593	0.0798
Linearity	0.4596	0.0693
Signal Density	0.8432	0.6264
Bus Stop Density	0.4783	0.5252
Household	0.6764	0.3212
Job	0.0578	0.3452
Residential Density	0.1972	0.2914
Commercial Density	0.3649	0.3856
Institutional/Office Density	0.4322	0.4488
Log(VKT)	0.6722	0.2370
Log (PKT)	0.5885	0.1131
Intercept	1.7308	1.3331

Key findings of SVM Model

• Contributing factors in distinguishing hotspots and non-hotspots zones:

Total pedestrian-vehicle collisions

Intersection density Signal density Household density VKT PKT Intersection density Pedestrian network complexity Signal density Bus stop density Institutional/office land use density

Violation involved collisions

Conclusion

- Intersection density is the most influential factor in the frequency of violation-related collisions
- Pedestrian network features and land use areas are significant on hotspots identifications
- Locations with poor pedestrian network connectivity require countermeasures that mitigate pedestrian violations

Future Directions

- Explore more precise measures for pedestrian exposure, including collecting extra survey data or implementing activitybased algorithms to estimate the volume
- Conduct some other advanced techniques to identify the collisionprone zones, such as Deep Learning models
- Investigate the impact of other contributing factors on pedestrian violations including income, car ownership, and household characteristics

Thank You

ghomirah@mcmaster.ca

